Haimin Hu*, Gabriele Dragotto*, Zixu Zhang, Kaiqu Liang, Bartolomeo Stellato, Jaime F. Fisac

PRINCETON UNIVERSITY

Optimization

Optimal Control

Algorithmic Game Theory

Regulating Airspace

3

is a complex FAA business...

FLIGHT RISKS

How a Series of Air Traffic Control Lapse Nearly Killed 131 People

Two planes were moments from colliding in Texas, a harrowing example of the country's fraying air safety system, a New Yor Times investigation found.

Airline Close Calls Happen Far More Often Than Previously Known

F.A.A. Issues Safety Alert After **Runway Near Misses**

After a series of high-profile episodes at major airports, the Federal Aviation Administration has taken steps in recent months to address airport safety.

Even more complex for UAVs...

Extremely complex when a myriad of *autonomous* UAVs interact

Preference and safety tradeoff?

Want to optimize their operations in real time

- Avoid idle times,
- Match operations to their schedule,
- Plan trajectories
- Many players!

Wants to (primarily) ensure safety

- Collision-free planning,
- Ensure fairness,
- Then, optimize efficiency.

Conflicting objectives

Wants to (primarily) **ensure safety** Set the **incentives**

Optimize their operations according to the incentives

The most natural incentive

Who Plays First?

How to determine the order of play (i.e., the order of trajectory planning) such that the regulator optimizes its objectives?

Problem abstraction

Enforces the order by setting $z_p = 1$ for some permutation $p \in \mathcal{P}$ **Regulator** Optimizes a cost function $f(x^1, ..., x^n) = f(x)$ Variables of all players but *i* **Play a strategy** $x \in \mathcal{X}(z, x^{-i})$ factoring the order and the other players' strategies **Optimizes** a cost function $g^{i}(x^{i}; x^{-i}, z)$

 $\min_{x,z,\hat{x}} \quad f(x)$

subject to $(x_p^1, \ldots, x_p^n) \in \mathcal{S}(p),$

 $x = \sum z_p \hat{x}_p,$ $p \in \mathcal{P}$

Given a permutation

subject to $(x_p^1, \ldots, x_p^n) \in$

Implicit Blackbox

A blackbox can provide us the solution for the players

$$\in \mathcal{S}(p), \qquad \qquad \forall p \in \mathcal{P}$$

Given *z*, player *i* solves a **convex-quadratic equality-constrained Stackelberg game**

 $\min_{x^{i}} g^{i}(x^{i};x^{-i},z) := \frac{1}{2}(x^{i})^{\top}Q^{i}x^{i} + (c^{i})^{\top}x^{i} + (x^{-i})^{\top}C^{i}x^{i}$ Sequential "Stackelberg" (or n-level) game $\frac{x_{after}^{-i} \in OPT(x^{-i},x^{i})}{x^{i} \in \mathbb{R}^{m}}$ "Followers" optimality

Given a permutation

subject to $(x_p^1, \ldots, x_p^n) \in$

Blackbox

A blackbox can provide us the **solution for a given** *p*

$$\in \mathcal{S}(p), \qquad \forall p \in \mathcal{P}$$

Given *z*, player *i* solves a **convex-quadratic equality-constrained Stackelberg game**:

$$d^{i}(x^{i};x^{-i},z) := \frac{1}{2}(x^{i})^{\top}Q^{i}x^{i} + (c^{i})^{\top}x^{i} + (x^{-i})^{\top}C^{i}x^{i}$$

 $A^{i}x^{i} + D^{i}x^{-i} - b^{i} = 0,$
 $C_{after}^{-i} \in OPT(x^{-i},x^{i})$ "Followers" optimality
 $c^{i} \in \mathbb{R}^{m}$

11

STP converges to a Stackelberg equilibrium

Sequential trajectory planning (STP), a popular multi-agent control approach, **produces a local Stackelberg equilibrium** in a single pass

Deterministic

Linear wrt *n*

Supports constraints

12

Two fundamental operations

Pricing \tilde{p}

A partial assignment \tilde{p} of the order of play i.e., we know the first k < (n - 1) players playing

Assign an optimistic *f*-bound on \tilde{p} monotonicallyincreasing w.r.t. any children

Pricing, in depth

Pricing \tilde{p}

Assuming the UAV i plays as the l-th player, it solves

minimize $g^i(x^i; x^{-i}) := \sum_{t=0}^T x_{t+1}$ subject to $x_{t+1}^i = f^i(x_t^i, u_t^i)$ $x_0^i = x_{init}^i$ $x_t^i \in \mathcal{X}^i, \quad u_t^i \in U^i$ $x_t^i \notin \mathcal{O}^i$

- Assign an optimistic *f*-bound on \tilde{p} monotonicallyincreasing w.r.t. any children

$$:= \sum_{t=0}^{T} \ell^{i}(x_{t}^{i}, u_{t}^{i})$$

$$x_{t}^{i}, u_{t}^{i})$$

Trajectory Dynamics

Set of controls

Obstacles and no-fly zones

The Branch-and-Play

Implicitly enumerate the space of permutations by:
Pricing of partial permutations
Pruning and exploration strategies

The Branch-and-Play

Experiments

BnP performs time-wise consistently in ATC

Better flight times with ATC

Metric	\boldsymbol{N}	FCFS	Randomized	Nash ILQ	B&P (ours)
Cost Group (s)	4	$1.24 \pm 0.29 \\ 25.76 \pm 5.0$	1.19 ± 0.23 24.98 \pm 4.06	$3.61 \pm 0.94 \\ 44.50 \pm 8.84$	1.04 ± 0.24 20.41 ± 2.72
T/O rate	•	1%	0%	36%	0%
Cost		1.73 ± 0.49	1.70 ± 0.43	$\textbf{5.40} \pm \textbf{1.36}$	1.41 ± 0.3
Group (s)	5	$\textbf{29.27} \pm \textbf{8.29}$	$\textbf{28.84} \pm \textbf{6.74}$	$\textbf{48.34} \pm \textbf{11.4}$	$\textbf{20.5} \pm \textbf{6.04}$
T/O rate		6%	2%	64%	1%
Cost		2.43 ± 0.82	2.55 ± 1.09	8.73 ± 2.13	$\textbf{2.0} \pm \textbf{0.51}$
Group (s)	6	31.83 ± 9.34	33.62 ± 12.05	$\textbf{50.9} \pm \textbf{11.92}$	$\textbf{22.18} \pm \textbf{7.74}$
T/O rate		9%	20%	96%	2%

Branch-and-Play outperforms 3 baselines in all three metrics

Swarm formation

Autonomous vehicles

www.dragot.to

Accelerating Scientific Discovery at Princeton

Modular Algorithm

Actionable Insights

Solid Benchmark Results

Who Plays First? Optimizing the Order of Play in Stackelberg **Games with Many Robots** Haimin Hu Gabriele Dragotto Zixu Zhang Kaiqu Liang Bartolomeo Stellato Jaime F. Fisac

arXiv 2402.09246

