

CANADA EXCELLENCE RESEARCH

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

When Nash meets Stackelberg

Joint work with M. Carvalho, F. Feijoo, A. Lodi, S. Sankaranarayanan

Wait a second!

What has Game Theory to do with Integer Programming and why should we care?

A 60 seconds pitch.

Why should we care?

 $max_x \quad c^{\mathsf{T}}x$

- $Ax \leq b$ $x \in \{0,1\}^n$
- E.g., a retailer building its products portfolio

Why should we care?

 $max_{x} \quad c^{\mathsf{T}}x + x^{\mathsf{T}}Qy$ $Ax \le b$ $x \in \{0,1\}^{n}$

E.g., a retailer building its products portfolio

Extends typical OR problems to multi-agent settings

Fairness of algorithms and solutions

What has it to do with IP?

Broad topic for this talk, but some hints given later on...

$max_{y} \quad d^{\mathsf{T}}x + x^{\mathsf{T}}Qy$ $Ey \leq f$ $y \in \{0,1\}^{k}$

E.g., another retailer

CANADA EXCELLENCE RESEARCH

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

When Nash meets Stackelberg

Joint work with M. Carvalho, F. Feijoo, A. Lodi, S. Sankaranarayanan

Consider a Bagel Shop

I usually make a case for MTL Bagels...

Coronavirus

Coronavirus

Macron calls for Covid vaccine exports from EU to be controlled

a fresh crisis with exports row

EU threatens to block Covid vaccine exports amid AstraZeneca shortfall

Coronavirus

EU could block millions of Covid vaccine doses from entering UK

How EU's floundering vaccine effort hit

theguardian

Consider a Drug

Fpizer produces and sells its *Drug* in a market in order to profit

And competes with Giovanni & Giovanni Hence, they play a simultaneous game with the Drug

Canada taxes their drugs And regulates exports/imports of the drug

Canada regulates the market Playing a sequential game with the Drug companies

Sequential Stackelberg Game

Canada

Canada competes with the UK The countries play another simultaneous game among themselves

We call this Nash Game Among Stackelberg Leaders (NASP)

What if....

Drug companies are instead energy producers, insurance companies, ...

The Barolo Chapel by Sol LeWitt and David Tremlett

Definitions and Algorithms A brief view into our work

Background

Stackelberg Game

(Stackelberg, 1934; Candler and Norto, 1977) In many cases, at least \mathcal{NP} -hard

Y of polyhedra

- The feasible set for the leader is often *non-convex*, and *non-connected*
 - Basu et al. (2020) prove that under certain assumption, \mathcal{F} is a union

Background

Nash Equilibrium

(Nash. 1950, 1951)

Then, $\bar{x} = (\bar{x}^1, \dots, \bar{x}^n)$ is a Mixed Nash Equilibrium (MNE) iff No player has an *incentive to deviate* from its equilibrium strategy \bar{x}^{l} given the other player choices \bar{x}^{-i}

PNE: "play" multiple strategies where probabilities sum up to 1

Each player solves an optimization problem P^i depending on its decisions x^i and the one of other players x^{-i}

When each agent plays a *mutually optimal strategy* x^i wrt the strategies x^{-i} of all the other players, then we have a so-called Nash Equilibrium

MNE: "play" a single strategy with probability 1

Some Results

Complexity

Algorithms

Complexity

Theorem (Carvalho, D., Feijoo, Lodi, Sankaranarayanan, 2019)

Given a NASP with 2 leaders and 1 follower each, the followers solve a linear program and the leaders have linear objectives:

- It is Σ_2^p -hard to decide if the game has an *MNE*

_ It is Σ^p_2 -hard to decide if the game has an PNE even if all leaders'

feasible regions are bounded

- If each player feasible region is *bounded*, then there exists an *MNE*

The problem is not PLS-complete as many other equilibrium problems!

There are *three* fundamental complexity theorems for *NASPs*

Complexity

Algorithms

Every player *i* has a non-convex feasible region \mathcal{F}_i , made of a *union of polyhedra*

We can use Balas's to retrieve their convex-hull cl conv(\mathcal{F}_i)

We solve it and find a solution \tilde{x}^i in the convex-hull, but not within any of the original polyhedra.

We solve it and find a solution \tilde{x}^i in the convex-hull, but not within any of the *original polyhedra*.

If it was a MIP

The solution is <u>not feasible</u>. We would search for a disjunction and *cut it off!*

MNE interpretation

Each point in cl conv (\mathcal{F}_i) \ \mathcal{F}_i can be expressed as a convex combination of points *strictly laying in* \mathcal{F}_i

If points in \mathscr{F}_i are *pure strategies*, then cl conv (\mathscr{F}_i) \mathcal{F}_i contains *mixed strategies*!

Complexity

Algorithms

Algorithms

All the following algorithms are valid for NASPs as well as for generic Stackelberg Games!

Algorithms

A full enumeration

For each player *i*, go for a full enumeration of its feasible region \mathcal{F}_i - Find $\mathcal{F}_i^* = \text{cl conv}(\mathcal{F}_i)$ using Balas'

Theorem (Carvalho, D., Feijoo, Lodi, Sankaranarayanan, 2019)

The full enumeration algorithm terminates finitely either with a MNE or a certificate of non-existence.

Solve the Nash Game on $\mathscr{F}^* = \mathscr{F}_1^* \times ... \times \mathscr{F}_n^*$ for $\tilde{x} = (\tilde{x}^1, ..., \tilde{x}^n)$

Algorithms

each player *i*. Try to find an Equilibrium

Poly $\frac{i}{k}$

There exists an MNE \tilde{x} : check if any player can deviate. This can be done with a simple *MIP* by fixing \tilde{x}^{-i} and solving for x^i :

- approximation and repeat.

Instead of enumerating all the polyhedra, start with one polyhedron k for

- If no deviation exists, then <u>TERMINATE</u>. We found an *MNE*

Algorithms

approximation and repeat

- Poly $\frac{i}{k}$

Algorithms

approximation and repeat

- Poly $\frac{i}{k}$

Algorithms

approximation and repeat

Algorithms

Combinatorial Heuristic

polyhedra.

an MNE

[if it terminates, it gives a PNE. it might never terminate!

If we are interested only in *PNEs*, then the equilibrium \tilde{x} strictly lays in \mathcal{F} , and not in $\operatorname{clconv}(\mathcal{F})$

Then the pure-strategy \tilde{x}^i is either in one of the four

Algorithms

Outer Approximation

polyhedra.

the complementarity equations $j \in \mathscr{P}^i$

We start with just the common constraints $\mathcal{O}_0^i = \{ A^i x^i \le b^i; \ x^i \ge 0; \ z^i \ge 0 \}$

As mentioned, each player i has a feasible region \mathcal{F}_i given by a union of

$$\mathcal{F}_{i} = \left\{ \begin{aligned} & A^{i}x^{i} \leq b^{i} \\ x^{i}: & z^{i} = M^{i}x^{i} + q^{i} \\ & 0 \leq x^{i}_{j} \perp z^{i}_{j} \geq 0, \end{aligned} \right. \quad \forall j \in \mathcal{P}^{i} \right\}$$

We can iteratively build up each feasible region \mathcal{F}_i by adding

Algorithms

Outer Approximation

$$\mathcal{O}_0^i = \{A^i x^i \le b^i;$$

VAR. SELECTION to be added to the approximation

 $\mathcal{O}_1^i = \operatorname{clconv}\left\{\left\{\mathcal{O}_0 \cap x_i = 0\right\} \cup \left\{\mathcal{O}_0 \cap z_i = 0\right\}\right\}$

NODE SELECTION We solve the node. If it is *infeasible*, then we backtrack or select a different complementarity (MIP) restarts)

We check with a *similar rationale* of the other algorithms if an MNE is also an MNE for the original game.

We start with just the common constraints

 $x^i \ge 0; \ z^i \ge 0$

We select a complementarity id $c_i \in \mathscr{P}_i$

Complexity

Algorithms

Computations (PNEs)

	EQ (s)	WINS	NO_EQ (s)	WINS	ALL (s)	TL	SOLVED
FullEnumeration	29,08	6	0,12	82	120,21	9	140
InnerApproximation	13,23	61	0,23	0	51,33	34	149
OuterApproximation	86,60	0	78,08	0	719,28	55	94

NASPs

More or less the typical figure "we do better" than the others

Computations (PNEs)

	EQ (s)	WINS	NO_EQ (s)	WINS	ALL (S)	TL	SOLVED
FullEnumeration	7,25	13	0,12	83	328,23	27	122
Combinatorial Heuristic	1,01	52	1,08	1	1,05	0	149

NASPs

More or less another typical figure "we do better" than the others

#include <chrono</pre>

The software is already available on GitHub It consists of more than 7k lines of codes:

- Command line interface

- - Stats.AlgorithmPara

JumPlayers, value: 0);

An Open Source Solver

olved = {false};

- Standardized with C++ best practises

- Models, abstracts, and solves LCPs, Stackelberg Games, Nash Games, and NASPs

Builds like a library that can be integrated in third-party projects

Supports explicit modeling for energy trade markets

- To come: integration with other MIP solvers (SCIP, CPlex, ...)

Mixed Integer Programming (MIP)

- Extend powerful algorithmic arsenal and developed *polyhedral tools*

The Horizon

Bridging MIP and AGT

Applications

- Environmentally efficient energy markets
- Health systems
- An Open Source Solver

Algorithmic Game Theory (AGT)

 Using MIP arsenal to model complex interactions between agents
 Convexification for Games

Integer Programming Games

We have a *simultaneous non-cooperative* game where *n* players are solving an optimization problem with:

-linear objectives with respect to their variables, and -bi-linear objectives with respect to other players variables

We are developing:

- Exact algorithms
- Cutting planes

$$\min_{x^{i}} \left\{ (c^{i})^{\mathsf{T}} x^{i} + \sum_{j=1, j \neq i}^{n} (x^{j})^{\mathsf{T}} Q_{j}^{i} x^{i} : x^{i} \in \mathcal{X}^{i} \right\}$$

• Enhanced separation oracles

• Milder concepts of equilibria

DATA SCIENCE FOR REAL-TIME DECISION-MAKING

Thanks!

TECHNOLOGICAL UNIVERSITY

