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Oh me! Oh life! of the questions of these recurring,
Of the endless trains of the faithless, of cities fill’d with the foolish,
Of myself forever reproaching myself, (for who more foolish than I, and who more faithless?)
Of eyes that vainly crave the light, of the objects mean, of the struggle ever renew’d,
Of the poor results of all, of the plodding and sordid crowds I see around me,
Of the empty and useless years of the rest, with the rest me intertwined,
The question, O me! so sad, recurring - What good amid these, O me, O life?

Answer.
That you are here - that life exists and identity,

That the powerful play goes on, and you may contribute a verse.

Walt Whitman
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Abstract

Single-elimination tournaments are a popular type of tournament among sports, more
specifically in tennis. Despite the current state-of-the-art procedures prevent seeded play-
ers - or highest rated opponents - from matching in early rounds, match repetitions among
other players are possible, even in tournaments very close in terms of time. Therefore,
the allocation process for non-seeded players plays a fundamental role in avoiding match
repetitions and in increasing the diversity of matches.

The thesis develops a methodology for enforcing fairness in single-elimination tennis tour-
naments in terms of a reduction of match repetitions in consecutive different tournaments,
without significantly altering the draw procedure. The considered tournament allocation
problem amounts to solving a clustering problem by means of mathematical program-
ming. Several results and solutions are provided for real-life instances related to Grand
Slams in 2017 by exploiting the potential of an Integer Programming solver. Moreover,
a greedy approach to generate quantitatively good solutions is presented, along with two
heuristics. Full tournament simulations are performed to assess the quality of presented
methodologies. Among the results, appreciable improvements are obtained for both the
expected number of match repetitions and a related measure of fairness. Benchmarks
between heuristics, the greedy algorithm, and the optimal solutions are presented. An
important outcome is related to the quality of solutions built with the greedy algorithm.
Some techniques of data visualization are implemented to highlight the obtained results.
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Chapter 1

Introduction and drivers

1.1 Single-elimination and fairness

The single-elimination - or sudden-death - is a type of tournament in which the loser of
each match is directly eliminated from the game, while the winner moves on to the next
round. The tournament ends when a final match between the last two players results in a
winner, which is the tournament champion. Sudden-death is a common type of elimina-
tion tournament in sports such as football, tennis, and baseball.

This type of tournament has been deeply studied in Statistics and Combinatorial Math-
ematics. Horen & Riezman| (1985)) review several studies on the matter, pointing out how
different configurations for a generic tournament lead to diverse patterns of winners and
losers. Therefore, according to their paper, the tournament configuration might favor or
disadvantage contenders. Furthermore, Williams| (2010) has shown that - under certain
assumptions - there is always a specific tournament structure which maximizes the odds
of winning for any generic player. Moreover, according to the authors, a single-elimination
tournament might be won by any player which exceed a determined amount of victories
in an equivalent round robin tournament. Hence, because of several players might be
potential champions for the same tournament, some concerns about fairness and the final
ranking arise.

Therefore, dealing with fairness on a macroscopic scale can turn out to be very com-
plex. This thesis focuses on fairness in terms of match repetitions, trying to limit
repeated matches during a given period of time. Moreover, parameters such as surface
type, country, and entry level of players are taken into account as potential elements of dis-
parity and conflict between players. Clearly, the proposed analysis can be as well extended
to any other parameter of interest.
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1.2 Match repetitions

There are several cases in which players have been paired with the same opponent multiple
times during a time-window ranging from 1 to 3 months. This implies a decreased diversity
of matches among players, which might make games less interesting for the public as
well as for the players. Empirical evidence from ATP supports those claims.

As a matter of facts, the ATP database provided by Sackmann| (2017) - the creator of
TennisAbstract.com - provides several examples of match repetition. In particular, we
focused on the data regarding first rounds of 128, 64, and 32 players tournaments held in
2017. The Table reports match repetitions for players in first rounds of several ATP
tournaments from January to September 2017. In addition to that, there are few cases
in which - as reported by Sackmann! (2018) - finalists in a given tournament play against
each other in first rounds of the next tournament. For instance, Diego Schwartzman and
Fernando Verdasco played against each other in the final round of Rio de Janeiro ATP-
500, and again in the first round of Acapulco the following week. While the last case is
definitely rare, match repetitions in early rounds are very common in ATP tournaments.

1.3 Variety of the matches and randomness of the draw

Variety - or diversity - is the extent by which different elements of a set differ by one or
more characteristics. In the specific application of this work, ensuring a reasonable variety
means trying to create the more diverse match pairings in tournaments. Hence, the aim of
avoiding match repetitions fits perfectly with the concept of variety. Moreover, this goal
can be achieved by integrating several parameters to measure diversity, such as nationality
of players, performances in a given period of time, number of matches played.

One of the fundamental assumptions of this thesis is related to the luck of the draw. Single-
elimination tournaments are structured by randomly assigning a number of players in their
respective slots as well as performing a constrained draw for seeded players. Therefore, is
essential to ensure that any structuring process involves a randomized draw.
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Table 1.1: Match repetitions from January to September 2017 in ATP Grand Slams and
Challengers. Adapted from |Sackmann| (2017) database.

Tourney Name Size | Month Winner Seed | Loser Seed | W/L
Qingdao CH 32 April Andrej Martin 7 Aleksandr Nedovyesov | NO
Prague CH 32 July Andrej Martin 4 Aleksandr Nedovyesov | NO

2/0
Sophia Antipolis CH | 32 April Arthur De Greef 8 Vincent Millot NO
Bordeaux CH 32 May Arthur De Greef NO Vincent Millot NO

2/0
Busan CH 32 May Blaz Kavcic 3 Sekou Bangoura NO
Granby CH 32 July Blaz Kavcic 1 Sekou Bangoura NO

2/0
Shenzhen CH 32 March Duck Hee Lee 4 Tatsuma Ito NO
Gimcheon CH 32 May Duck Hee Lee 7 Tatsuma Ito NO

2/0
Australian Open 128 | January Dudi Sela NO Marcel Granollers NO
Wimbledon 128 | July Dudi Sela NO Marcel Granollers NO

2/0
Leon CH 32 March Federico Coria NO Tigre Hank NO
San Luis Potosi CH | 32 April Federico Coria NO Tigre Hank NO

2/0
Yokohama CH 32 February Go Soeda 4 Hiroki Moriya NO
Taipei CH 32 April Go Soeda 8 Hiroki Moriya NO

2/0
Santiago CH 32 March Guilherme Clezar NO Tristan Lamasine NO
Liberec CH 32 July Guilherme Clezar NO Tristan Lamasine NO

2/0
Wroclaw CH 32 February Jonathan Eysseric NO Hubert Hurkacz NO
Poznan CH 32 July Jonathan Eysseric NO Hubert Hurkacz NO

2/0
Medellin CH 32 July Juan Pablo Varillas Patino Samudio | NO Facundo Mena NO
Floridablanca CH 32 August Juan Pablo Varillas Patino Samudio | NO Facundo Mena NO

2/0
Sophia Antipolis CH | 32 April Kimmer Coppejans NO Stefanos Tsitsipas NO
Barletta CH 32 April Kimmer Coppejans NO Stefanos Tsitsipas NO

2/0
Granby CH 32 July Liam Broady NO Marc Polmans NO
Vancouver CH 32 August Liam Broady NO Marc Polmans NO

2/0
Barletta CH 32 April Matteo Donati NO Andrea Pellegrino NO
Genova CH 32 September | Matteo Donati NO Andrea Pellegrino NO

2/0
Prostejov CH 32 June Radu Albot 6 Facundo Bagnis NO
Wimbledon 128 | July Radu Albot NO Facundo Bagnis NO

2/0
Leon CH 32 March Tennys Sandgren 6 Mackenzie Mcdonald NO
Savannah CH 32 May Tennys Sandgren 5 Mackenzie Mcdonald NO

2/0
Quanzhou CH 32 March Yuki Bhambri NO Tatsuma Ito NO
Gatineau CH 32 July Yuki Bhambri NO Tatsuma Ito NO




Chapter 2

Definitions and formulation

2.1 Tennis sudden-death

In the specific field of Tennis, single-elimination tournaments are the standard for ATP
and WTA competitions. In the majority of ATP 500,1000 and Grand Slam tournaments,
the number of players is either 32, 64 or 128. A common practice is seeding, by which a set
of players are allocated in some specific slots for the first round. Following a preliminary
ranking, those players are positioned into the tournament brackets graph in advance,
before the general draw for unseeded players. Most of the times, the set of seeded players
includes the best performing players in the tournament. The allocation of seeds is required
in order to ensure that top players do not eventually match each other until late or final
rounds.

Assuming n players are joining a sudden death tournament, the number of matches is
given by n — 1. The amount of players n is always a power of two, namely n = 2! for some
positive number ¢. The tournament structure represents the way players are facing each
other in the tournament. Graphically, the structure is represented by a brackets graph
such as the one in Figure [2.1

gy —
M —

n-1

n
Figure 2.1: Brackets graph
In order to create the first round of a tournament, each player has to be assigned to a
specific slot in the brackets graph. As an additional requirement for the model, we suppose

that tournaments have no byes. A bye occurs when a player or a team does not play in a
generic round, playing directly in the following one.

4
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2.2 Seeded players

In the majority of tennis tournaments, best players are seeded typically following the
WTA (Women Tennis Association) or ATP (Association of Tennis Professionals) rank-
ings. Several tournaments compute rankings as to reflect a particular characteristic of a
competition: for instance, the Wimbledon seeding methodology favors players which are
better performing on grass rather than other surfaces (Wimbledon|2017)).

Once the seeds ranking is set up, seeded players are allocated into the brackets graph.
Only the first two seeds usually have an a priori allocated slot, while the remaining seeds
have some specific slots in which they can be allocated. Since more than one seed might
be allocated to the same slot, a draw is made. The slot location in the brackets graph
is given by the round in which players are expected to eventually match each other. For
instance, in a Grand Slam with n = 128 players and m = 32 seeds:

1. The top 2 players are allocated in the first spot and the last one, so that - assuming
they will win all their games - they play against each other in the final round.

2. The top 4 players eventually play against each other in the semi-finals

3. The top 8 players eventually play against each other in the quarter-finals, the top
16 in the round before quarters and so on.

For the purpose of this work, we assume the seeding is given. Hence, a set of seeded
players and their positions in the first round is provided.

2.3 Problem definition

Let us first provide the following definitions.

Definition 1 A tournament is a single-elimination tournament with no byes and an
amount of players n = 2¢ : t € N.

Definition 2 A round is a set of matches between z players which results in z/2 winners.
In a generic tournament, the number of rounds is rounds = logan. The set of rounds in
the tournament is defined as R={r; € Z: 0 <r; <t}

Definition 3 I = {i € N: 1 <i < n} is the set of players in the tournament.

Definition 4 The structure of a tournament is a mapping that assigns each player i € 1
to asingle slot in S ={s; e N: 1 <s; <2(n—1)}

In the first round - or r; = 0 - for a tournament of n players there are exactly n/2 matches
and n slots. Therefore, each slot can be indexed with a unique number ranging from 1 to
n. The next round has n/2 players with n/4 matches, and indexes ranging from n + 1 to
n+1+n/2.
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Definition 5 A generic round r; has slot numbers which can be indexed as follow:

s; € [1 4 Z?;B/l\n>0 2Tounds—l’ Z;‘Z:O 27‘0unds—l}

Definition 6 A match repetition occurs when two players play against each other for
more than one time in a given time window.

With those definitions, the problem can be formulated as follow.

Definition 7 The tournament allocation problem clusters n players with m seeds in
k groups, in order to maximize diversity and minimize match repetitions. Matches within
clusters are then randomly determined by a draw.

As noted in Sections and several parameters are potential candidates as to
maximize some sort of diversity, as long as a randomized draw takes place. Hence, the
problem is related to a process which splits players into different clusters - or groups.
The clustering minimizes some sort of numerical measure for match repetitions and max-
imizes diversity in terms of a set of given parameters. Once clusters are created, the draw
can randomly assign non-seeded players to their position in the brackets graph. Therefore,
the solution of the tournament allocation problem does not provide certainty - in terms
avoided match repetitions and increased diversity - but rather increases the odds of creat-
ing such a tournament structure. As mentioned in Section some players are fixed in
their specific clusters because of their seeding position. Those seeded players reduce the
degrees of freedom for the problem, hence making it easier to solve.

Definition 8 k : k € NA (n mod k) = 0 is the number of clusters - or disjoint sets of
players - in a tournament structure. Therefore, each cluster has an amount of u = 7 € N
players. J = {j € N:1 < j <k} is the set of clusters

The Definition [§] assumes that the number of cluster allows the creation of subsets with
the same cardinality.

Definition 9 A seeded player is a player which has an a priori assigned slot in the
brackets graph. M € I is the sub-set of seeded players in a tournament, with cardinality
m < n. Each cluster has an amount of f = 7+ € N seeded players.

Moreover, some players join the tournament following a qualification process. Hence,
newly qualified players need to be taken into account and treated as special entities.
Different types of players can be classified as follow:

1. Seeded players
2. Unseeded players

(a) Qualified players @ are players which join the tournament from some sort of
qualification phase. Hence, the amount of match repetitions with other players
is arbitrarily assumed to be 0. This set includes lucky losers LL - the bests non-
qualified players in the qualification phase - which join the tournament when a
competitor is not able to play.
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(b) Non-qualified unseeded players

We introduce a matrix H for representing the cost of a match repetition between two
players as well as other costs related to conflicts.

Definition 10 The matrix H is a matrix n X n in which the generic element h,g €
R A hqa,g > 0 represents some sort of interaction between two generic players o, 3 : o, 8 € 1

Hence, h coefficients quantify some sort of conflict or interaction between two generic
players, which is to be minimized. For the problem purpose, we assume that h,g € R :
hag > 0. Moreover, the matrix H is symmetric and has a diagonal of zeros. The former
assumption roots in the rules defined in order to create h coefficients. In particular, we
assume that h;; =0Vi € I and ho g = hgo Vo, B € 1.

hi1 =0 hi2 hin
hot  has =0 - hon
H=| 2 T | = (hy > 0) € RO (2.1)
hnl hn2 te h'rm =0

Definition 11 A conflict between to players «, 5 € I exists when one or more incompat-
ibility is detected between them.

For instance, if we define match repetitions as a type of incompatibility, a conflict is
detected each time two players have played against each other in the past. The former
example can be restricted, for example, to the current season, so that only recent match
repetitions are taken into account. Following the last definition, it is evident how con-
flicts are intrinsically linked to coefficients in the matrix H. Moreover, we can distinguish
between potential conflicts and activated one.

Definition 12 Two generic players «, 8 € I have a potential conflict if h, g > 0.

Definition 13 A conflict is activated when two generic players «, 3 € [ are playing
against each other in a match and h, g > 0. Hence, the conflict measure is defined as

hag-

Therefore, a generic conflict between two players becomes active only if the two are
actually allocated in slots as to play together and their h, g is positive.
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2.4 Integer Quadratic Programming formulation

The tournament allocation problem can be stated in terms of a quadratic 0/1 optimization
problem. As referenced in Section the goal is to create clusters of players as to
minimize some sort of conflicts - for instance, match repetitions - and increase diversity
across matches. In particular, the goal is to optimize the feasible draws related to the
first round.

k n-1 n
minimize Z =% (> Y. hasTa;zg;) (2.2)
7j=1 a=1fB=a+1
S.T.

k
day=1Viel (2.3)

j=1
inj =U Vj eJ (2.4)

i=1
Tij € {0,1} Viel,jelJ (2.5)
a,pBiel, jed (2.6)

The generic variable z;; is equal to 1 each time the player ¢ is allocated to the cluster
j.
The O.F. in Equation[2.2] minimizes the sum of conflicts for a generic cluster j € J. Hence,
if two players «, 3 € I are both allocated to the same j € J, the product hagza;zs;
becomes active and assumes the value of h,g. In any other case, this contribution is equal
to 0. In order to obtain the objective function, a sum through every cluster is performed.
As reported in Section matrix H is symmetric and has a zero-diagonal. Therefore, as
to simplify the O.F., only inner sums so that a < 3 are taken into account. A more formal
implementation is given in Equation [2.2] which uses indexes on the top and bottom of the
sums as to obtain the desired effect.
The constraint in Equation [2.3] ensures that each player is allocated to one and only one
cluster, while Equation sets the maximum amount of players per cluster to u.

A generic seeded player ¢ € M is a priori positioned in a slot s; € S in the first
round. Therefore, an amount of f variables for each cluster j are fixed, so that their
binary variables x;; are set to 1.

2.5 Integer Linear Programming formulation

We can derive an alternative Integer Linear Programming model by applying the standard
linearization to the product of binary variables, as mentioned in|Della Croce, (n.d.). Indeed,
the linearization of a generic product z;z; can be achieved by introducing a new binary

8
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variable y;; € {0,1} such that ¥ij = x;xj. In addition to that, 3 new constraints are
declared:

T 2 Yij
Tj > Yij (2.7)
i +x; <14y
In particular, as to linearize the O.F.in Equation YajBj = TajTg; is introduced.

Therefore, 3 new constraints are declared in Equation [2.9] and a new O.F. is introduced

in 28

k n—1 n
minimize Z =% (> Y has¥ajs;) (2.8)
j=1 a=1p=a+l
S.T.
k
dwiy=1Viel
j=1
n
in]‘ =u VjeJ
=1
Taj = Yaj,Bj
L6j 2 Yaj,5j

(2.9)
Taj + 285 < Yajpy +1

Yajpi €{01}Viel, jeJ

.inj:lViEM
xijE{O,l} Viel,jeld
a,Biel, jed

The new model might achieve better performances on solvers which do not support the
automatic linearization of the O.F. or are not able to process quadratic O.F. As reported

in Chapter [6] the solver used in the simulations for this thesis automatically linearizes the
O.F.



Chapter 3

Related problems

The tournament allocation problem introduced in Section is a particular formulation
which can be lead back to the broad set of clustering problems. Therefore, there are several
similar problems in the literature. As to be more specific, two problems are presented in
Sections and Those problems have similar characteristics if compared to the
tournament allocation problem.

3.1 Max-cut problem

The tournament allocation problem shares several characteristics with an undirected and
weighted max-cut problem. FEach player ¢ € I is represented by a vertex in a graph, and
the given matrix H is interpreted as the adjacency matriz. The greater the weight of an
edge is, the more the two linked nodes have some sort of conflict.

For instance, in the example graph in Figure is very immediate to visualize that
players 7 and 8 have no connections with other players. Hence, the cluster in which they
virtually can be allocated is not quantitatively relevant for the O.F. Moreover, players 2
and 3 have a weighty edge which may cause a sensible increase in the O.F. - in the case
they are allocated in the same cluster. Hence, the problem of clustering players can be
visualized as a closed line which creates a subset of nodes. In order to achieve a good
clustering in terms of diversity and match repetitions, the line has to maximize the sum
of edges’ weights which are cut. In Figure the red line clusters a subset C' = {2,5,6,8}
and has a cut-value of 0.54+6+ 1+ 145+ 0.5 = 14. As to transpose this methodology
to the tournament allocation problem, k lines are required to create k disjoint clusters.
In terms of complexity, the maz-cut problem is proven to be NP-Hard (Kartik & Karimi
2007). The graph for a tournament of 32, 64 or 128 players is harder to visualize but
can be helpful as to represent the tournament allocation problem. An example of a full
tournament graph is reported later on in Figure [6.4

Given a generic graph G = (V, E) where V is the set of nodes and E the one of edges,
a cut is defined as a partition of V into two subsets 5,5 : S+ S =V ASNS = 0. The

weight of the cut is defined as the sum of edges’ weights which have endpoints in the two

10
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Figure 3.1: Example graph with n = 8 players

different subsets. z; is introduced for each vertex i € V of G(V, E). For each edge between
two generic nodes 7,j € V, w;; represents its weight. One of the many formulations for
the max-cut problem is the one reported in Equations 3.1

1<j

1
mazimize Z = — Z Zwij(l — x;5)

2 i€V jel

1 (3.1)
S.T. €Ty — e €
-1 €8

wi; € R

The term (1 — z;2;) assumes the value of 0 if the two nodes 4, j belong to the same
subset. In any other case, the term is equal to 2, and then compensated by the 1/2 factor
before the sum. Max-cut resembles the tournament allocation problem with k = 2 clusters.
Nodes represent players and edges the quantification - or measures - of conflicts. In order
to obtain the problem with k clusters, we need to generalize the max-cut. Therefore, the
formulation introduced in Section is very similar to a multiple max-cut.

11
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3.2 Max-diversity problem

The tournament allocation problem has some characteristics in common with the mazx-
diversity problem. Given a set of n elements, the goal is to find a subset of m elements in
such a way that the sum of their distances d;; is maximized.

n—1 n

maximize 7 = Z Z dijzix;)
i=1 j=it1

P

dij = (| Y (sip — $jp)?

l’iG{O,l}
1:1e€NAI<n
p:peNApSP

Assuming s;;, as the value of the p'" attribute for the generic element 4, the O.F. max-
imizes the sum over each p attribute of the set. |Kuo et al. (1993) propose the formulation
such as the one reported in Equation3.2] The concept of distance is dynamical and can
be fit into several different problems. For instance, we can define some sort of distance
so that match repetitions pull players closer. Hence, the max diversity tries to maximize
the distance between players, avoiding match repetitions. In terms of computational com-
plexity, the Authors prove that the max-diversity problem is NP-hard. By extending the
max-diversity to k clusters and defining distance d;; in a way that fits with Section
the problem resembles the tournament allocation problem.

12



Chapter 4

Heuristics and greedy

4.1 A greedy algorithm

In order to create an initial feasible solution, the interpretation derived from the graph
theory is fundamental. As mentioned in Section the tournament allocation problem
can be represented through a graph G = (V, E') where V' = [ is the set of players and H is
the adjacency matrix for the graph. The degree of a node ¢ € I is defined as the number
of edges incident to ¢. Hence, given the adjacency matrix H, the degree of a generic vertex
i can be obtained counting how many non-zero values are present either on a i*" row or
column. The degree of a node ¢ € I is equivalent to the number of players with which
i has at least one conflict. Since hopg > 0 Vo, B € I, summing the weights of each edge
incident to a generic node i results in its weighted degree. Therefore, the weight of each
edge measures the conflict value between two nodes. Nodes with a large weighted degree
are the ones with the greatest amounts of potential conflicts.

The distribution of degrees and weighted degrees, as the ones reported in Figure [6.1
seems to follow almost a normal distribution. Hence, a methodology to create an initial
solution has been developed. A feasible solution can be generated by prioritizing the allo-
cation of players with higher weighted degrees. Seeded players and their clusters are still
considered as fixed, as in Section Starting with the player with the greatest degree,,
players are allocated in clusters. Each player ¢ € I is taken in account individually, and
virtually allocated in a cluster j € J. More precisely, the algorithm starts when only seeds
are already positioned in their clusters. In the second instance, the change Az in the
O.F. is computed by virtually allocating player i in the j** cluster. The process iterates
k times for each j € J, and ¢ is allocated to the cluster with the smallest and best Az;
and at least 1 free space available. The vector € contains the ordered set of i € I by their
weighted degrees, so that degreey(€[a]) > degreey(ela +1]) Va € N A1 < a < (u-k).
The process iterates through € and is represented in Algorithm [I} Therefore, players are
allocated starting with the ones with higher weighted degrees. After every iteration, the
next one takes into account all the previous allocations.

13



4 — Heuristics and greedy

Algorithm 1: Greedy algorithm for basic solution

Input: e, H,n,k,u
Output: z
1 AZ =AZ=0;
2 best; = 1; first = true;
3 for cluster = 1; cluster < j;cluster + + do

4 Freecluster =Uu

5 end

6 foreach ¢; in e do

7 if isSeeded(e;) = false then

8 first = true;

9 for cluster = 1; cluster < j; cluster + + do
10 AZ = 0;

11 if Freegyster > 0 then

12 for player = 1; player < n;player + + do
13 if Tplayer,cluster = 1 then
14 ‘ AZ+ = leayer,ei;

15 end

16 end

17 if first = true then

18 first = false;

19 AZ = A7 +1;

20 end
21 if AZ < AZ then
22 AZ = AZ;

23 best; = cluster;

24 end

25 end

26 end

27 Le;best; = 1;

28 Freepest; — —;

29 end

30 end

Once a basic feasible solution is generated, as previously described, a random swap-
ping procedure is launched for swap; seconds. In the first instance, the procedure creates
a bucket containing all the unseeded players in the set B = I — M with cardinality u - k.
Then, two players «, 8 € B are randomly extracted from the bucket. Assuming that, at
the beginning of the iteration, « is allocated in j, € J and f in jg € J with j, # jg, the
two players are virtually swapped in terms of clusters. Hence, Z, j, and Zg j, are defined
as the contributions to the O.F. with the two players allocated in their original clusters.
Then, the algorithm computes the two contributions to the O.F. in a virtual case of a swap

14
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Zajs and Zgj, . If the quantity AZ = (Za,j, + Zpj.) — (Za,jo + Zp,j,) 1s negative, the
swap is improving the O.F. Therefore, players are swapped in the solution. The procedure
is reproduced in Algorithm

Algorithm 2: Swapping procedure

Input: z, H, n, swap;
Output: z

1 while Time<swap; do
2 while j, = jz do
3 Ta,j,—>random(in B); Zg j,—>random(in B);
4 end
5 fori=1;i <n;i++ do
6 if ‘,Z‘@J'B =1 then
7 if ¢ # [ then
8 ‘ Za,j5+:Ha,i§
9 end
10 ZB7J/3+:HIB71’
11 end
12 if -fi,ja =1 then
13 if i # o then
14 ‘ Z,B,Ja—i_:Hﬁ,“
15 end
16 ZQJQ—F:HCM‘;
17 end
18 end
19 if AZ <0 then
20 i’a,ja = O;EQJﬁ = 1;
21 3_}57]'6 = O; j@ja = 1;
22 end
23 end

24 return x

15
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4.2 Heuristics and matheuristics

Heuristics provide feasible solutions which might become available in a reasonable amount
of time and achieve a good approximation for the optimal O.F. Because of the majority of
solvers have several heuristics and exploration policies implemented, outperforming them
implies exploiting some peculiar characteristics for each specific problem.

As noted by |Della Croce et al.| (2013]), exploiting the specific structure of a given problem
can provide a polynomial-time algorithm which achieves a quantitatively good O.F. Most
of the times, the application of heuristics results in feasible solutions, while in few cases
it leads to the optimal value. The principle behind matheuristics is the hybridization of
exact-methods with heuristics, combining the strengths of the two. In several applications
of matheuristics, the solver is used as a blackbor for multiple instances, in order to ex-
plore the solution space in different ways. Two approaches are presented in the following
subsections, while results are analyzed in Chapter [0]

4.2.1 Heuristic A - Random fixing

The following approach tries to leverage on a specific type of players. Qualified players Q
and lucky losers LL - as defined in Section - have zero h coefficients. Hence, they do
not affect directly the O.F. Moreover, from a quantitative perspective, any two Q or LL
players can not be distinguished because of their 0 impacts on O.F.

In the first instance, the solver is used as a black box to find 6 different solutions with a
time limit of ¢;. The best two ones, 21 and 292 are compared. If a qualified player i € T
is allocated to the same j € J cluster in both the two best solutions z?! and z2, the
allocation becomes definitive. Hence, x; ; for that player is constrained to the value of 1.
The maximum amount of qualified players fixed in each cluster is limited to @, /k, where
Q@ is the number of qualified players in the whole problem. In addition to that, a bucket
containing all the non-seeded and non-qualified players - which were stable in the best two
solutions - is generated. Each cluster has its own bucket, and requirements to join it are
reported in the following list.

1. A player must belong to the same cluster in the last two best solutions.

2. Given M D - the maximum degree of a player in the problem - only players with a
degree ranging in [Ay, M D, Ay M D] : A\, s € [0,1] are added to the bucket.

The last requirement does not guarantee that the allocation is improving branched solu-
tions. However, it reduces - to some extent - the degrees of freedom by fixing some players
with conflict measures in a specified range. After generating the buckets, a randomly
selected 7 percentage of players from the bucket; are fixed in the 4t cluster. The solver
is used again with a time limit of ¢; - 3/2 and with x%! as starting solution.

Since the variables are fixed once and only one sub-problem is created, this heuristic
belongs to the class of hard variable fixing heuristics. This might lead to a sub-problem
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with a bad approximation for the original optimum. There is no guarantee the new con-
strained solution space contains the original optimal value. Moreover, since players are
fixed only if they are stable in the last two best feasible solutions, a feasible solution is
guaranteed as well in T' ~ 5/2t;.

Algorithm 3: Heuristic A

1 Solver.Solve(timelimit = t;; max__solutions = 0);
2T =Solver.getSolution(best);
12=Solver.getSolution(best-1);

Allocatedy, = 0;

forc=1;¢<j;c++ do
forp=1;p<n;p++ do
if isSeeded(p) = false and xg}c = xg?c =1 then
if isQualified(p)= true and Allocated. < (Qn/k);
then

‘ Solver.setconstraint(zy, . = 1);
end
else if \,, MD< degree(p) < ApyMD then
| Bucket..add(zp,);
end

© o N O ks WwN

I
B W N = O

end

=
(S}

end

jun
=]

end

forc=1;c<j;c++ do

max__fized = Bucket;.size() - n;

for rand = 1;rand < max__fized;rand + 4+ do
fix=Bucket..getRandom/();
Solver.setconstraint (fix=1);
Bucket..delete(fix);

end

NONNN N =R =
B W N = O © 0 N

end
Solver.StartFrom(xf!);
Solver.Solve(timelimit = 3/2 - t;;);

N NN
N o w;

4.2.2 Heuristic B - weighted local branching

Local Branching was introduced by [Fischetti & Lodi| (2003)). The solver is used as a black
bock and the solution space is explored defining a neighborhood around a specific solution.
While the method in Section uses a hard variable firing approach, local branching
uses a soft fixzing approach. Therefore, given a set of rules, the solver is able to decide
which variable to fix and subsequently to analyze an easier sub-problem, without losing
the chance of finding a better solution in the main problem.

17
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The local branching is implemented in the tournament allocation problem with the
reported notation. First, the solver is used to find a feasible solution Z, which is assumed
as the incumbent one. The goal is to explore a neighborhood of . In particular a K —OPT
neighborhood which satisfies Equation 4.1} In order to avoid ambiguity, the k constant k
for the local branching is renamed as kp,qneh-

n k n k
Z Z Lij + Z Z (1 - xij) < kbranch (41)

;=0 ;=1

The solver is consequently launched as to explore the left branch, represented by the new
constraint in Equation The right branch - which is complementary to the left - can
be obtained with the constraint in Equation [£.2]

n k n k
Z Z Lij + Z Z (1 - wij) > kbranch +1 (42)

;=0 ;=1
The original heuristic develops as follow. The solver explores the left branch with a time-

limit ¢;. AZ(2%, z) - the first part of inequality 4.1|- is introduced as a measure of distance
between the incumbent solution z¥ and a generic one .

1. If no improving solution is found, the problem is led back to the right branch
and the kp,qnen, parameter is increased.

2. If an improved solution z? is found, it becomes the new incumbent solution z = z?,
and the solver explores the right branch with the new incumbent as the initial
solution.

3. If a general time-limit 7; is triggered, the last incumbent is the final solution

4. If an optimal solution is found for the general problem, the heuristic stops.

Starting from this local branching process, the proposed heuristic exploits players’
degrees introduced in Section The main assumption regards players with a degree
ranging in [Ay, - M D, A\pr - M D], in which MD is the maximum degree in the problem and
Am, Ay € [0,1]. The heuristic supposes those players have more inertia in moving between
cluster than the other ones have. The increment in their inertia - compared to the one of
regular players - is given by a factor of n > 1. Two subsets are created: players in A € [
have more inertia, while B € I are the ones regular inertia, so that ANB =0ANAUB = I.
Equation [4.1] is altered as follows:

n k n k n k
Yoo wmyt) > (-wy) +Y D> gt

23, =0Ni€EB xij=1Ni€B z;;=0Ni€A
o n (4.3)
+ Z Z 77(1 - l‘ij) < ( Z n)kbranch
I;jZIAiEA CCEJ'Z]./\’L'EA
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Intuitively, Equation introduces a notion of weighted degree of freedom. A specific
weight, which depends on the degree of the player, is assigned to each variable x;; € A. The
search is limited to new K — OPT neighborhood which takes into account those weights.
Therefore, modifying the value of a generic variable z;; € A takes more effort than mov-
ing one z;; € B. In addition to that, the algorithm switch to an unweighted local
branching in the case the solution is not improving or infeasible for more than 1 iteration.

Algorithm [] presents a policy for managing the value of kprqnen. As for the original
local branching, AZ,,(Z,x) is a weighted distance between the incumbent solution and a
generic one. The variable switch in Algorithm [l makes possible to switch between the local
branching and its weighted version. The ky.qnen parameter is incremented by p > 1 each
time the solution is not improving or infeasible, in order to prevent stagnation in the same
neighborhood. Moreover, if the solution is not improving after ni — limit iterations, the
heuristic stops and the last incumbent solution is adopted as best one. A set of arbitrary
values for all the parameters is presented in Chapter
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Algorithm 4: Heuristic b

1 Kvranch init = Kbranch; constrain = null; counter = 0; bestOF = 0; ni — count
switch = true;
while FElapsedTime < 1T; do

© 0 N O Ok wWwN

I
N = O

13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41

end

counter + +;
if ni — count > ni — limit then
| TL=-1
end
Solver.Solve(timelimit = t;;);
if counter == 1 then
| bestOF=Solver.getOF() +1;
end
if Solver.gesStatus = FEASIBLE or Solver.gesStatus = OPTIM AL then

if Solver.gesStatus = OPTIM AL and noConstraint(AZ(Z,x) < kpranch OT
AZw(f, x) < kbrzmch) then
‘ TL = —1/* Optimal found x/
end
if Solver.getOF() < bestOF then
nt — count = 0;
x = Solver.getSolution();
Solver.startFrom(z);
if switch = true then
Solver.setConstraint( AZ, (Z,x) < kipraneh - active)/* active is
the result from the sum in Eq. */
nd
Ise if switch = false then
Solver.setConstraint( AZ(Z, x) < Kpranch);
switch = true;/* local branching without weights */

o O

end
nd
Ise
switch = false;ni — count + +; kpyranch = Ebranch © 1
/* not improving */
if kpranen > n then

‘ kbranch/2;
end

o O

end

end
else if Solver.gesStatus = INFEASIBLE then

switch = false; kbromch = kbranch a2
Solver.removeConstraint( AZ(z, x) < kpranch and AZy (T, z) < kbranch);
if kpranen > n then

‘ kbranch/Q;
end

end 20




Chapter 5

Implementation and simulations

5.1 Introduction

Experimental tests have been performed by using llog CPLEX 12.7 running on a 3,5 GHz
Intel Core i7 with 16 GB 2138 MHz LPDDRS3 of RAM Memory, and operating system
MacOS 10.13.4. The solver is integrated with Java and a SQLite database with the ATP
data. Details about the dataset adopted are available in Section The simulations
are performed taking into account the four Grand Slams Tournaments from 2017: Roland
Garros, Wimbledon, US Open and Australian Open. Further information about the source

code is available in Chapter
The following steps are taken in order to obtain results for a single tournament.

1. The tournament is loaded and the Matrix H is generated.

2. Two solutions are generated with k = 4.

(a) A greedy solution built from the algorithm presented in Section
(b) One solution from CPLEX. This can be either an exact solution or one gener-
ated by a heuristic.

3. For each solution in 2| the following sub-process is iterated s = u/2 times.

(a) Players are allocated in the first round with a draw.

(b) A simulation for the full tournament moves on through the tournament until a
tournament champion emerges.

(c) Several indexes are tracked and measured both in the first round and next ones.

In order to give more solidity to the results, simulations are performed u/2 times. wu is the
number of unseeded players per cluster, as defined in Section
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5.2 Coeflicients in Matrix H

Following the definition of Matrix H given in Section we introduce a conjectural
set of rules for conflicts and matrix H coefficients. Those rules can be defined as to fit
specific needs for each tournament. The rules presented constitute only one of the many
reasonable options and they are selected in order to fit the four Grand Slams. In the
first instance, the default value of each element in H is ho g3 =0 Vo, 3 € I. After matrix
H is set to a zero-matrix, h coefficients are computed accordingly to the following rules.

Rule 1 If two players o, 8 € I are from the same country, then hq g+ = 5;.

Rule 2 If two players a, 8 € I played against each other in a 1! round in the last year,
then hy g+ = 5;.

Rule 3 If two players a, 3 € I played against each other in a 27¢
then hy g+ = 2;.

round in the last year,

Rule 4 If two players «, 8 € I played against each other in a 3" round in the last year,
then hy g+ = 1;.

Rule 5 If two players o, 5 € I played against each other either in quarter-final or semi-
final rounds in the last year, then h, g+ = 0.5;.

In this case, the first rule is ensuring that country diversity is increased by stating
that players from the same country generate a conflict. For instance, this can be overturned
in the case the need is to pair players from the same country. This virtual rule might lead
to a case in which at least one player per country goes to the second round.

5.3 Generating solutions

Two solutions are generated for each tournament. The first one is found by CPLEX,
either using the only solver or adopting one heuristic. The second solution is built with
the greedy approach explained in Section Both solutions are taken into account as to
generate draws and full tournament simulations.

5.4 First round draw

The tournament allocation problem results in a solution in which players are allocated in &
clusters. Hence, there is still the need to perform a draw in order to plant players into the
brackets graph, as mentioned in Section Therefore, players are randomly allocated to
a free slot s; in the first round r; = 0. The only constraint for the draw process regards
the cluster of allocation for each player, which is given by the solution considered. Hence,
the random allocation takes place in k different groups.
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5.5 Simulation of full tournaments

Once a generic first round draw is performed, next rounds can be predicted as follow. A
blend of current position in ATP ranking and the Head2Head from the last 2 years is
taken into account as to estimate the odds of winning a match for a player. Given two
generic players «, 8 € I we define the probability of a of winning a match against 3 as:

P(O‘76) =0.65- Prank(a7ﬁ) +0.35- PHQH(O%B);

#Wins of a against 3 (5.1)
PHQH(aa B) = .

#Matches of o against 3
The term P,qnr(c, 5) is equal to 1 if the ranking of « is greater than the ranking of
£ and 0 otherwise. Each time at least one between «, 5 is a qualified player, or more
generally the two players have not yet matched, the term Ppgop(c, 3) is 0. Then, the

probability is computed as follow:

P(a, B) = Prank (5.2)

Each full tournament simulation starts at the first round r; = 0 and advances until a
winner is found in the last round t — 1 = r. As to compute the Pgop(a, ), only matches
played in the last two years are taken into account: the range is dynamically selected
depending on the tournament date.

5.6 Tracked indexes

Some indexes are tracked as to measure the extent of improvements between solutions.
Since the data from the four Grand Slams is available also in terms of winners and losers
for each round, the data is loaded as the actual tournament. Hence, other results are
compared with actual measures in the considered tournament. The following table sums
up the tracked indexes in simulations. Moreover, the reports in Chapter [6] are more
synthetic and simplified.

In the case a heuristics is used with an execution time of 7;, the solution is compared
with the one obtained with CPLEX - namely the CPLEX comparator - running with the
same time limit 7;. This process is required in order to compare the results obtained
from the heuristic with the one from the raw CPLEX. As for the greedy solution, the
comparator is launched with a time limit 7; equal to the amount of time required by
the greedy algorithm to generate the solution. The former procedure gives insights into
the performance of the greedy compared to CPLEX. More detailed statistics are as well
available in Chapter [6]

5.7 Parameters for Heuristics

Following the definitions in Sections [3|and [, Tables [5.2] and [5.3| report the parameters set

for heuristics used in simulations.

23



5 — Implementation and simulations

Table 5.1: Tracked indexes in simulations

# ACTUAL CPLEX GREEDY
LB X X X
Optimal O.F. value - - -
Solution status X X
O.F. value X X X
O.F. % improvement X X
CPLEX O.F. with T;=GreedyTime X
Greedy improvement with swaps X
Number of active conflicts

in the last generated first round X X X

in the last whole tournament generated x X b
Average number of active conflicts

in every first round generated X X

in every whole tournament generated X b
Active conflicts measure

in the last generated first round X X b

in the last whole tournament generated x X X
Average measure of active conflicts

in every first round generated X X

every whole tournament generated X b

Table 5.2: Parameters for heuristic A

Parameter Value

tL 10s

0 10

max_fixed  bucket;.size() - 0.8
Am 0.45

AM 0.55

24

Table 5.3: Parameters for heuristic B

Parameter Value

Ty 120s

tL 7s

Kvranch n-0.2=25
W 1.1

Am 0.35

AM 0.65

ni — limit 4




Chapter 6

Computational testing

6.1 Matrix H

Some statistics and graphics from the 4 H-matrixes generated for the four Grand Slams
of 2017 are reported in the following section. The rules for generation and attribution of
h values are the ones reported in Section Table sums up several key parameters
for matrixes H. Among those, the number of nodes having a degree in one of the ranges
specified in heuristics - as of Algorithms in [3| and 4] - and the average weighted degree.

Table 6.1: Overview for matrixes H

# RG WI USs AUS
Average degree 25.66  22.53 2247 24.14
Average weighted degree 9730 84.01 87.16  88.93
Number of Q and LL 17 17 18 17
Max h in H 15.00 17.00 17.00  15.00
Max degree M D 54 46 47 48
Max weighted degree 217.50 183.50 191.00 201.00

Nodes with degree in [0.35M D,0.65M D] 66.00  39.00 48.00  53.00
Nodes with degree in [0.45M D,0.55M D] 14.00  14.00  18.00  14.00

6.1.1 Degree distributions

By looking at the Figures in [6.1] peaks on 0 are related to qualified players, which have no
connections with other players. Moreover, the distribution of degrees and weighted degrees
in tournaments seem to follow a normal distribution. Despite no deep investigations have
been made, the Figures in report the fit of those distributions with the normal one.
By virtually excluding qualified players and the most connected ones, we obtain a good
fit for the remaining players.
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(a) Roland Garros

T 20 T
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(c) US Open
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(d) Australian Open

Figure 6.1: Distributions for degrees of players in Grand Slams of 2017
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6.1.2 Graphs

The Figures in represent matrix H with a circular graph. The complexity of the four
tournaments is graphically evident because of the density of connections. Most of the
players entertain several connections - or conflicts - with many others. Moreover, qualified
players are easy to spot as they do not have conflicts. In order to report a graph similar
to the one introduced with the max-cut problem in Section Figure represents a
graph for the whole Wimbledon tournament. The unconnected nodes around the main
agglomerate are qualified players, while the ones with names are the most connected ones.
In particular, they are the one with a weighted degree in the top 67th percentile.

6.2 Grand Slam Tournaments results

The subsections above report results from simulations in which the CPLEX solution is the
optimal one. Results reported in column ACT are for the actual tournament, CPLEX
for the optimal solution from the solver, GREEDY from the one built up with the greedy
algorithm. Values in parenthesis refer to the improvement - or worsening if negative - of
the given index in comparison to the actual tournament.

Moreover, values for ACT across rows always refer to the real tournament. Therefore,
even if they are reported as "average' they refer to the only real tournament.

Table 6.2: Roland Garros results

ACT CPLEX GREEDY
LB 142.0 142.0 142.0
Time - 4,186.28s 1.88s
CPLEX O.F. with TL=GreedyTime - 885.0 821.5
O.F. 1429.5 803.5 (43.79%) 821.5 (42.53%)
Greedy improvement with swaps - - 47.5
Solution status - Optimal Feasible
Average indexes | s=16
Number of conflicts in the 1st round 11 8 7.69
Measure of conflicts in the 1st round 41.5 25.72 (38.03%) 24.47 (41.04%)
Number of conflicts in the tournament 32 25.25 25.56
Measure of conflicts in the tournament 122.0  62.25 (48.98%) 63.38 (48.05%)
Last simulation indexes
Number of conflicts in the 1st round 11 9 7
Measure of conflicts in the 1st round 41.5 25.5 (38.55%)  14.5 (65.06%)
Number of conflicts in the tournament 32 28 21
Measure of conflicts in the tournament 122.0 57 (53.28%) 35.5 (70.9%)

The results in the tables illustrate remarkable reductions of the conflicts. The

most interesting result derives from the greedy algorithm, which is noticeably faster
than any solver instance or heuristic. Moreover, there is some interesting evidence about

28



6 — Computational testing

Igopolov

xandr Dol

8
<

licolas
likhail Youzhny
e nard Struft

y Muray ]
Andrey Kuznetsot ests ( gmqs aonic
\izay i i il "
\gn:'mn g cl},‘?“l; e o sﬂg) ) o BroWn ! Elr:,g% If"gmschrevber
mco\asa‘;‘g\mhﬁa s N Bl in K 020 SO j ’.E,O,',g; Troickj
05 3 . acy
i D8 pely o N8l 'O Lopag® e X ady 90 Bagy,
MM d0 (e, Ty 17 licor Al is
3080 M B e 2 > Turs ) " Steolag o0t
Xttt s, @ Y ke,
BRI T b
3850050 0y
30 a0 (@P K¢
RN
?\\&‘e‘i@c‘\# o
s S
D5
@
&8
&
g5
o8 H
z298% EEEL
z8820% ELERY
© %9,1,%7%5%'%3- ‘,’;%%p 852
%9550 5%3 922808 (LH
%R A B Ea 88
% o BoRaLenReRReet

N
e

200 yer DI it

ROovarSGast e gioet

Oay oo
v LSl %
Caohw i Nt
kg% e’ ot a:g‘;‘;mno
anasi Ko'f‘f;'re:y‘fg O vourd
Okl oric
ROQeriooé’,f{}a”éa‘ & %ﬁ,’;‘:n%r Dolgopolov
Tennye M2 cita = Jiri Vesely
nnys Sandgren ‘ Andy Mu Gael Montils
fo . 2 g
P Sla""?ji\ Dominic Thiem et 53UNd0 gy
Tomr‘n%\’f?“‘B Marcos Bagp ey e
oo 101y e
oftrey B0 Mo Flom £ovic
N 77 Map, ki
) 7 h poen
o osf,")? 1700 Oer )
//,gg 6, Oty
S

R
ne 3““«"%\'@@5@

RRUC o o
RO 05,
R N SeTRese
> I ] §5E5 2
$ CICIBES SE

RAE AN i LISEE
SEESNEED SEese

TS558 58 8835255

= 258 g8 §%

5 O == g3

o g

(¢) US Open (d) Australian Open

Figure 6.3: Circular graphs for Grand Slams of 2017
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Figure 6.4: Wimbledon 2017 graph - Fruchterman Reingold g=5.0 computed with Gephi.
Node size and node name is proportional to the weighted degree. Labeled nodes have a
weighted degree in the 67th percentile.
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Table 6.3: Wimbledon results

ACT CPLEX GREEDY
LB 162.5 162.5 162.5
Time - 465.75s 1.88s
CPLEX O.F. with TL=GreedyTime - 767.0 680.0
O.F. 1279.5 660.0 (48.42%) 680.0 (46.85%)
Greedy improvement with swaps - - 39.5
Solution status - Optimal Feasible
Average indexes | s=16
Number of conflicts in the 1st round 9 6.38 6.19
Measure of conflicts in the 1st round 28.5 16.56 (41.89%) 19.28 (32.35%)
Number of conflicts in the tournament 29 24.94 26
Measure of conflicts in the tournament 78.0 69.72 (10.62%) 71.62 (8.17%)
Last simulation indexes
Number of conflicts in the 1st round 9 7 5
Measure of conflicts in the 1st round — 28.5 20 (29.82%) 8 (71.93%)
Number of conflicts in the tournament 29 21 23
Measure of conflicts in the tournament  78.0 61.5 (21.15%)  62.5 (19.87%)

Table 6.4: US Open results

ACT CPLEX GREEDY
LB 164.5 164.5 164.5
Time - 764.99s 1.88s
CPLEX O.F. with TL=GreedyTime - 820.5 756.0
O.F. 1310.0 710.5 (45.76%) 756.0 (42.29%)
Greedy improvement with swaps - - 39.5
Solution status - Optimal Feasible
Average indexes | s=16
Number of conflicts in the 1st round 12 5.19 5
Measure of conflicts in the 1st round 48.5 16.94 (65.08%) 16.03 (66.95%)
Number of conflicts in the tournament 32 24.94 23.81
Measure of conflicts in the tournament 110.5  78.16 (29.27%) 76.53 (30.74%)
Last simulation indexes
Number of conflicts in the 1st round 12 5 6
Measure of conflicts in the 1st round 48.5 13.5 (72.16%) 18 (62.89%)
Number of conflicts in the tournament 32 25 30
Measure of conflicts in the tournament 110.5 80 (27.6%) 96 (13.12%)
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Table 6.5: Australian Open results

ACT CPLEX GREEDY
LB 135.0 135.0 135.0
Time - 3,933.37s 1.88s
CPLEX O.F. with TL=GreedyTime - 828.5 751.5
O.F. 1328.5  715.0 (46.18%) 751.5 (43.43%)
Greedy improvement with swaps - - 70.5
Solution status - Optimal Feasible
Average indexes | s=16
Number of conflicts in the 1st round 12 7.44 7.94
Measure of conflicts in the 1st round 31.5 19 (39.68%) 22.06 (29.96%)
Number of conflicts in the tournament 29 27.44 28.06
Measure of conflicts in the tournament  76.0 64.53 (15.09%) 69.19 (8.96%)
Last simulation indexes
Number of conflicts in the 1st round 12 8 9
Measure of conflicts in the 1st round 31.5 25 (20.63%) 20.5 (34.92%)
Number of conflicts in the tournament 29 29 31
Measure of conflicts in the tournament 76.0 65.5 (13.82%) 72 (5.26%)

the overall improvement of conflicts with this greedy approach. In fact, despite the
O.F. does not reach the optimal value given by CPLEX, the conflicts improvement rate is
very close to the one from the optimal solution.

Wimbledon and US Open tournaments require a relatively quick computation of the op-
timal solution. In such cases, the use of heuristic approaches might be less appealing. On
the other hand, tournaments such as Australian Open and Roland Garros take more time
to converge to the optimal solution.

6.3 Obtaining a brackets graph

Each simulation computed for the whole tournament ends with the name of the tournament
champion. While simulating the four Grand Slams, winners and finalist were almost every
time among the top and seeded players. This is basically due to the way the probability
of winning is defined - as mentioned in Section Moreover, this is also trivial because
the top seeds are supposed to be the best players.

However, we can underline how the purpose of the tournament allocation approach is not
acting on the tournament structure in a way that discourages the best players. Instead, the
model is reaching its goals about diversity and fairness without strongly affecting finalists
in last rounds, but rather by generating new opportunities for unseeded players.
Hence, the names obtained in simulations are the ones that we normally expect to win
those tournaments. The following output reports how a single Wimbledon tournament
might evolve according to the model. Moreover, in Table are reported the tournament
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champions for the referenced simulations of Wimbledon 2017.

Table 6.6: Winners for Wimbledon 2017 simulations

CPLEX GREEDY

Andy Murray Andy Murray
Stanislas Wawrinka Andy Murray
Andy Murray Jo Wilfried Tsonga
Stanislas Wawrinka Andy Murray
Roberto Bautista Agut Rafael Nadal
Stanislas Wawrinka Rafael Nadal
Marin Cilic Andy Murray
Andy Murray Andy Murray
Marin Cilic Andy Murray
Andy Murray Marin Cilic

Lucas Pouille Jo Wilfried Tsonga
Lucas Pouille Roberto Bautista Agut
Marin Cilic Rafael Nadal
Marin Cilic Stanislas Wawrinka
Lucas Pouille Lucas Pouille
Rafael Nadal Ivo Karlovic

Round R16
Fabio Fognini wins over Andy Murray
Nick Kyrgios wins over Diego Sebastian Schwartzman
Jo Wilfried Tsonga wins over Sam Querrey
Stanislas Wawrinka wins over Fernando Verdasco
Rafael Nadal wins over Karen Khachanov
Gilles Muller wins over Marcel Granollers
Roberto Bautista Agut wins over Kei Nishikori
Steve Johnson wins over Robin Haase
Albert Ramos wins over Aljaz Bedene
Gilles Simon wins over Andreas Seppi
Grigor Dimitrov wins over John Isner
Roger Federer wins over Mischa Zverev
Dominic Thiem wins over Paolo Lorenzi
Tomas Berdych wins over Richard Gasquet
Gael Monfils wins over Borma Coric
Juan Martin Del Potro wins over Novak Djokovic
Round R8
Nick Kyrgios wins over Fabio Fognini
Stanislas Wawrinka wins over Jo Wilfried Tsonga
Rafael Nadal wins over Gilles Muller
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Roberto Bautista Agut wins over Steve Johnson
Albert Ramos wins over Gilles Simon
Roger Federer wins over Grigor Dimitrov
Dominic Thiem wins over Tomas Berdych
Gael Monfils wins over Juan Martin Del Potro
Round R4
Stanislas Wawrinka wins over Nick Kyrgios
Rafael Nadal wins over Roberto Bautista Agut
Roger Federer wins over Albert Ramos
Dominic Thiem wins over Gael Monfils
Round R2
Rafael Nadal wins over Stanislas Wawrinka
Roger Federer wins over Dominic Thiem
Round R1
Rafael Nadal wins over Roger Federer
The winner is: Rafael Nadal!

Listing 1: Last rounds for a single Wimbledon 2017 simulation.

6.4 Heuristics performances

All the four tournaments are tested with the two introduced heuristics. Five tests are
performed for each heuristic and the average results are reported in Tables
and As mentioned, heuristics aim to find qualitatively good solutions with a limited
computational effort. In this respect, the results confirm that the CPLEX solver employs
several good exploration policies and raw heuristics that are hard to outperform. However,
the introduced heuristics can be useful for less performing solvers which do not embed
effective exploration policies. At the same time, we remark that the results for the two
heuristics are not as solid as the ones obtained with the greedy algorithm. Hence, further
improvements and changes might be required.
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Table 6.7: Heuristics on Roland Garros

TOURNAMENT NAME Roland Garros
PROBLEM OPTIMAL O.F. 803.50
PROBLEM OPTIMAL EXECUTION TIME 4186.28s
INSTANCES PER HEURISTIC 5
HEURISTIC A

Execution time 14.07s
O.F. Value 875.50
Solution status Feasible
Pure CPLEX O.F. Value 868.50
HEURISTIC B

Execution time 72.26s
O.F. Value 834.00
Solution status Feasible
Pure CPLEX O.F. Value 824.50

Table 6.8: Heuristics on Wimbledon

TOURNAMENT NAME Wimbledon
PROBLEM OPTIMAL O.F. 500.5
PROBLEM OPTIMAL EXECUTION TIME 660.0s
INSTANCES PER HEURISTIC 5
HEURISTIC A

Execution time 8.89s
O.F. Value 721.50
Solution status Feasible
Pure CPLEX O.F. Value 712.00
HEURISTIC B

Execution time 42.19s
O.F. Value 688.00
Solution status Feasible
Pure CPLEX O.F. Value 686.00
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Table 6.9: Heuristics on Us Open

TOURNAMENT NAME UsOpen
PROBLEM OPTIMAL O.F. 710.50
PROBLEM OPTIMAL EXECUTION TIME 764.9s
INSTANCES PER HEURISTIC 5
HEURISTIC A

Execution time 9.62s
O.F. Value 752.50
Solution status Feasible
Pure CPLEX O.F. Value 729.25
HEURISTIC B

Execution time 91.35s
O.F. Value 716.50
Solution status Feasible
Pure CPLEX O.F. Value 714.50

Table 6.10: Heuristics on Australian Open

TOURNAMENT NAME Aus Open
PROBLEM OPTIMAL O.F. 715.00
PROBLEM OPTIMAL EXECUTION TIME 3933.37s
INSTANCES PER HEURISTIC 5
HEURISTIC A

Execution time 9.89s
O.F. Value 767.50
Solution status Feasible
Pure CPLEX O.F. Value 775.50
HEURISTIC B

Execution time 73.27s
O.F. Value 745.50
Solution status Feasible
Pure CPLEX O.F. Value 728.50
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Chapter 7

Final remarks

The evidence about match repetitions has been the fundamental starting point of this work.
Only after addressing the existence of potential conflicts between players, a formalization
for the tournament allocation problem (TAP) has been given in a formal way.

The TAP seeks to allocate players in disjoint clusters with the aim of avoiding conflicts and
increasing diversity across matches in a specific single elimination tournament. Therefore,
players have the opportunity to fairly dispute matches with new rivals and are positioned
in the brackets graph with a more fair approach. The peculiar characteristics for any
specific tournament can be reflected in the way fairness is defined through the model.
Furthermore, we might speculate the public can enjoy a more diverse and varied
set of matches in tournaments created with this approach. One of the most important
elements is the stochastic component of the model, both mathematically and in terms of
sports ethics. It ensures that tournaments are subject to the luck of the draw.

The combinatorial optimization approach has led to concrete and measurable re-
sults, which improved the overall conflict measures in the tested tournaments. Moreover,
the two introduced heuristics provide a quicker way to obtain good solutions with
resource-constrained machines, less efficient solvers and a limited amount of time.

The most interesting result comes from the greedy algorithm, which achieved remark-
able results in short times. Looking beyond the combinatorial approach, some interesting
observations about degrees and networks linked to the analyzed tournaments have been
made. Some techniques of data visualization have been applied in order to make those
findings more appreciable. In particular, we underline that the process which led to the
development of the greedy approach rooted in the visualization of degree distributions.
Without any optimization tool, the greedy approach builds a qualitatively good solution
- as demonstrated by results in Chapter [6]- in no more than few seconds.

Tennis tournaments are complex networks of links between players and may turn
out to be difficult to approach with pure solvers, in terms of time and computational
resources. Hence, the greedy algorithm plays a fundamental role in providing a viable
way to ensure quick and good results. As to visualize the complexity laying behind
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those networks, some graphs have been included in the previous section. Moreover, an
interactive web visualizer for the four Grand Slams is available in Section

Despite this allocation model might challenge the almost pure stochastic method in use
nowadays, results show that diversity and fairness are improving. As mentioned in
the introduction, dealing with fairness in a broad meaning can be complex. Thus, the key
is defining the rules and principles behind the concept. The results also show how the
new allocation process is not affecting finalists in the last rounds but rather can create
new opportunities in early rounds for unseeded players. The increased diversity among
matches is positive for players as well as for the public. And winners - as it should be -
are always among the best players. Evidently, the simulation part does not comprehend
phenomena such as new emerging players, hence can not predict outcomes in which new
talented players are joining the tournament. On the other side, new possibilities are
created for those players as to climb the ladder.

As the final outline, the tournament allocation problem can be framed into several ap-
plications from different fields. Because its deep links with the max-cut problem and the
max-diversity, the same approach can be applied in many different disciplines.
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Chapter 8

Appendix

8.1

Source code

The full source code is available on GitHub on:

https://github.com/gdragotto/TournamentAllocationProblem

The source includes the following parts:

1.

Main.java contains the main source code. This includes the model implementation,
procedures to load data from the database, heuristics, a solution greedy approach
and a full-tournament simulators.

MatrizH.java contains the code as to generate the Matrix H following the rules given
in Section [6.1] In addition to that, the function to computer the odds of winning
matches - as referenced in Section [5.5]- is implemented in the class.

. Player.java contains the structure for the object Player.

. Results folder contains all the instances with optimal solutions.

Matlab folder contains the MATLAB® code wrote to analyze matrixes H and com-
pute some graphs.

Gephi folder contains the Gephi files as to render full tournament graphs.

8.2 Interactive visualizer

The four Grand Slams tournaments can be visualized at the following web page:

https://gdragotto.github.io/TournamentAllocationProblem/
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8.3 Data from ATP

In order to run simulations, the ATP database from Sackmann (2017) of TennisAb-
stract.com is used. Four ATP’s Grand Slams Tournaments from 2017 are taken in analysis:
Roland Garros, Wimbledon, Australia Open and US Open. The choice is due to the vast
amount of data available for both players and tournaments. Seeding positions and qual-
ified players are integrated into the dataset with official data from the ATP’s website on
ATP)| (2018).
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