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.

O\O

here a

re n players optl

shortest

oath on a grap

MizIiNg simultaneou

e The player 1 needs to go from s; to 7.

NG = (V,E) so that:

sly the

o x,, = | if the player i selects the edge e € E

\

Time

mm{uz(:(:z, .513_@’) X € Xz}

)

A regulator observes the outcome of the interaction but does not know
some utilities/actions

A regulator wants to intervene in the game



Network Congestion

A regulator observes the outcome of the interaction but does not know
some utilities/actions

A regulator wants to intervene in the game



Decision-making is rarely an individual task

Self-driven interactions with other decision-makers



Decision-making is rarely an individual task

Self-driven interactions with other decision-makers

We consider the perspective of an external regulator

Self-driven behavior often conflicts with societal goals

-xternal regulators should learn the agents’ preferences and intervene




Decision-making is rarely an individual task

—xternal regulators should learn the agents’ preferences and intervene

Intervene In

Learn the . ]
complex

Parameters :
settings

Some information regarding the players’ Select Nash equilibria when players solve mixed-
optimization problems is missing integer optimization problems



Learning Rationality in
Potential Games

Stefan Clarke, Bartolomeo Stellato, and Jaime Fernandez Fisac
(Princeton University, USA)
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Problem setup

Simultaneous and non-cooperative game where i = 1,...,n solves

min - u; (x5 24, 0, p)
L

st. x, € X; =4{B;0,u)x; + D; (0, u)x_; < b;(0,p)}

A set of unknown rationality parameters Known and observable context parameters

The utility u; is convex-quadratic in x, and

There exists a convex-quadratic potential function ®(x; 0, )

11



Our approach

Simultaneous and non-cooperative game where i = 1,...,n solves
min  u;(z;; 04,0, p)

:Lz’l,

st. x, € X; =4{B;0,u)x; + D; (0, u)x_; < b;(0,p)}
We observe dataD = {(z", 5")}7_, with equilibria and context

Inverse equilibrium task
“stimate @ so that it predicts the Nash equilibria XX
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The three ingredients

0 Potentiality Nash equilibria: ma}n{<1>(x;9,u) x, €A, i=1,...,n}

Learning NV L(0;D) L2 norm between target and prediction
Problem ZEAT,0

STl arget is a Nasnh equilibrium,

0 belongs to a set of feasible parameters
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The three ingredients

subject to 0 = R(0, i*)x" + c(0, i") + A0, i")* \*,
0 < b8, 1") — A0, p")x® L X* >0
P e R™ N ERY k=1,... K,
0 c 0.

0 Potentiality Nash equilibria: mgn{q)(x;é’,u) T, e, 1=1,...
Learning min  (1/K) Zé(:l ka _ a_:'kH%
Problem zF,AR,0

1}
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The three ingredients

‘ Potentiality Nash equilibria: mgﬂ{q)(ﬂf;eaﬂ) x, €A, i=1,...,n}
Learning min (1/K) Z?Zl 2P — 2%||5
Problem zF,AR,0

subject to 0 = R(0, i*)x" + c(0, i") + A0, i")* \*,
0 < b8, 1") — A0, p")x® L X* >0
P e R™ N ERY k=1,... K,
0 c 0.

We would like to find a (local) minimum of the learning
oroblem with a first-order method
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The three ingredients

e Differentiation Since the previous formulation IS non-convex:

» We differentiate L(6;D)with respect to the
parameters @

e How? We fix the “tight” complementarity
constraints to get a convex inner approximation
of the learning problem

Active set, i.e.,, the set of indices of tight
complementarity constraints

7 «— {z:b(0,0"%), — A0, 5") 2" = 0}

We employ Vg L(0; D) to update our estimates of @



The Algorithm

INPUT Max iterations T, step sizes {n},_,, and data D = {(z*, p*)} 1,

0 Initialization nitial parameters 6

Select Sample a data point ()'ck, _k)
Loop 1 Play (x )\t) — mm{cI)(x 9(t>,u ) x; € AX; (Q(t) ) Vi}
Times
Differentiate Compute VoL(0;D) on the current active set

ALY W) — 1, VoL (V)

OUTPUT o)
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Convergence

Convergence

The sampled gradient of the loss with respect to o converges to zero

With a at each Iteration, the algorithm
MiMmics a stochastic gradient descent with well-behaved derivates

Vg(0'")||a] = 0

lim E|
1T'— o0

Where g is a smoothened version of the loss

13



Network Congestion

Time

u2($27 L —3q 97 :u) — ZeEE Qi—le_zl@mie(mle T T xne)

A set of unknown rationality parameters

Personal preferences

Known and observable context parameters

Traffic, weather, road conditions

19



Network Congestion

Predicted NE

Iteration O

True NE
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Network Congestion

— == 3 agents, 8 nodes

3 agents, 10 nodes
3 agents, 20 nod

3 agents. 30 nod
Test error SELES,

— == 3 agents, 40 nod

0 20 o0 (D 100 125 150 175

[terations
Dataset of 90 equilibria

We |learn good estimates of the rationality parameters
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Cournot Games

Run-time (seconds)

_________________ timeout.

B Active-set
B Gurobi

'lTest error
3 B Active-set 2000
B Gurobi

4 1500-
3_

1000+
2_

H(001
1_
0 0

20 50
Number of agents

5 10 20) 50

Qur algorithm scales to large datasets
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Once we know the parameters...
We would like to prescribe strategies



Decision-making is rarely an individual task

—xternal regulators should learn the agents’ preferences and intervene

Intervene In

Learn the . ]
complex

Parameters :
settings
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Integer Programming Games intervene in

“complex”

Rosario Scatamacchia (Politecnico di Torino, ltaly) and settings
Margarida Carvalho (Universite de Montréal, Canada),

Andrea Lodi (Cornell Tech, USA), and
Sriram Sankaranarayanan (IIM Ahmedabad, India)




ImMax 63311 L192
L]

S.t. 33311 + 2$12 S 4
T € {O, 1}2
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max 0x11 + 12 —4x11221 + 6212729
1

S.t. 3.’1711 + 2.’,1712 S 4
T1 € {Ov 1}2

Their “profits” interact

max 4xo1 + 2x00—T21L11 — T22L12
L2

S.t. 2£E21 —+ 355‘22 S 4
To € {O, 1}2

Knapsack Games (Carvalho et al., 2022; D. and Scatamacchia, 2022), Critical Node Game (D. et al., 20235) 27



And it can get more complex...

28



Facility Location and Desigh Game

Sellers (players) compete for the demand of
customers located Iin a given geographical
area. Each player decides:

e Where to open its selling facilities
e What assortment to sell (i.e., what design)

Aboolian et al. (2007),
Cronert and Minner (2020),
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What are these games?

AN Integer Programming Game (IPG) 1s a simultaneous one-shot (static) game
among n players where each playeri = 1,...,n solves

H;m{uz(.rz, T_i):x; € Xy}

There is comr ality, i.e., each plavyer is
and there is

Koppe et al., (20T1), Sagratella (2015), D. et al (2021), D. (2022)

30



Why

They extend traditional resource-allocation tasks and
combinatorial optimization propblems to a multi-agent setting

Indivisible quantities, fixed production costs and logical
disjunctions often require discrete variables

INn general, they a

low to model complex operationa

requirements in-

‘he players’ optimization problems

Energy — Gabriel et al. (2013), David Fuller and Celebi (2017)
Supply Chain — Anderson et al. (2017)
Assortment-Price competitions — Federgruen and Hu (2015)
Kidney Exchange Problems — Carvalho et al. (2017/)
Cybersecurity — Dragotto et al. (2023)



Nash equilibria

X =(X{,...,X,) is a Pure Nash Equilibrium (PNE) if, for any player 1,

wi(ZTi, T—i) < ui(24,7—3) VI, € X,

¢ o
e o o

@ o o CXi
e o o o o

© ® ® . ® ClCOIlV(Xi)

Mixed strategies = randomizing over the convex-hull



The goal? Zero Regrets

Equilibria Equilibria Equilibria

Computation Enumeration Selection

Without assuming any specific structure of the game

Compute POA/PoS?
*Select (optimize over) a pure equilibrium?
Determine If one exists?

33



The goal? Zero Regrets

Equilibria
Computation

Equilibria
Enumeration

Equilibria
Selection

34



Type of Equilibrium

General Enumer. Select Pure Mixed Approx Notes

— — — — — — Most efficient, selection,
Zero Regrets existence, enumeration
Koeppe et al. (2011) X X X No (practical) algorithm
Sagratella (2016) X X X Convex payoffs
Del Pia et al. (2017) X X X X X Problem-specific (unimodular)
Carvalho, D., Lodi, - __ .
Sankaranarayanan (2020) X X X X Bilinear payofts
Cronert and Minner (2021) X X ) ¢ D)i:tgffetfn’ SXPENSIVE,
Carvalho et al. (2022) X X X S)i;;lneccetl?@ﬂ/eﬂumeratlor\,
Schwarze and Stein (2022) X X X Fxpensive Branch-and-Prune



Our Algorithm

Given an instance, compute a Nash equilibrium minimizing a function f(xy, ..., x,)



Our Algorithm

Given an instance, compute a Nash equilibrium minimizing a function f(x, ..., x,)

Practical assumptions
We can tractably optimize f over H?Q'

We can express u; as a linear function in x;



High-level idea

c Initialization
° Optimization
e Separation

K:{(x,z):xEH?{i,(x,z) c L}

¢ :={0<1}

X

arg min {f(x,2):(z,2) € K, (x,2) € ®}

wlj...,mn,z

T; = arg mm{uz(:cz, ) Ajzy < bzt € RY x 7P}

’L

f there is a player i so that u(X;, x_,) < u(x;, x_;)
¢=@U{ui(fi,$ ) >uz(x27 ) }and gotoa

Else: X is the PNE maximizing f

33



Why does it work?

An inequality is an equilibrium inequality /7 /t is valid for the
set of Nash equilibria

wi(Ti,x—s) > ui(x;,x—;) Ve, € &;

Theorem (D. and Scatamacchia, 2022)

e o {W) e i@ T) > i) })

Vi d; € BR(,T_;), i=1,...,n

(1) Pf€is a polyhedron
(2) P° does not contain feasible “profiles” in its interior
(3) The extreme points of P¢ are pure Nash equilibria

39



Knapsack Game

Network Formation
Games

Facility Location Games

Cybersecurity

Simultaneous-Bilevel
Games

Applications

Applications

Packing, Assortment
Optimization

Network design, the Internet,
cloud infrastructure

Retail, cloud service
Orovisioning

Ericsson Cloud Security

Energy, Insurance,

Baselines

Carvalho, D., et al. (2021,
2022)

Chen and Roughgarden
(2006), Anshelevich, et al.
(2008), Nisan et al. (2008)

Cronert and Minner (2021)

D. et al. (2023%)

Carvalho, D., et al. (2022)

Select

X

<

<

<

<

Enumer.

X X X X X

Improvement

N.A.

N.A.

>50x

N.A.

N.A.



Network Formation

here are n players optimizing simultaneously the
shortest path on a graph G = (V, E) so that:

O\O

e The player 1 needs to go from s, to 7.

e x;,, = 1 if player i selects the edge e € E
\ o 4 are linear flow constraints for the path s, — 7,
e The player i has a weight w,

e Players share the cost ¢, of building ¢



Network Formation

——0—05

\ \/

: WiCeLje
min{ E . . x; € X}
xT; _— Zkzl WELke

A few remarks

e No algorithms to select equilibria in arbitrary NFGs
e Several bounds on PoS/PoA in some specific instances

e \We consider the weighted version withn = 3

42



Network Formation

Price of Stability

1.07

1.06

1.04

1.03

4.9260

— PoS B Time (s) B Time Ist (s)
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378
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0.00
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Summing up

Algorithmic Game

Optimization Theory

Learning

44



Summing up

Algorithmic

Game Theory

Optimization

Model complex and hierarchical structure of
Interactions among agents

Learn games’ parameters from data

Prescribe effective regulatory interventions

45
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Or even hierarchical

48



Canada

Simultaneous
Game

Seqguential
Games

When Nash Meets Stackelberg (Carvalho, D., et al., 2022)

U.S.
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Knapsack Game

— Po0S B Time (s)

Price of Stability

0.190.07 2.350.45 18903 3

4/5.49

(2,25) (2,50) (2, 75)

(2,100)
(n,m)

O
10.111.04
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B Time st (s)
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