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Content
- A gentle introduction to Combinatorial Design. 
- Graph decompositions and the Oberwolfach Problem. 
- Our contribution in pills.

Focus Two fold: 

• Exploit optimization tools to solve combinatorics problems  
• Derive theoretical results from computational results



k-factor A k-factor of a graph G is a k-regular spanning 
subgraph of G.

spanning 
subgraph

A spanning subgraph of G is a graph with the 
same vertex set of G.

k-regular 
graph

A k-regular graph is a graph where each vertex 
has the same degree.

k-factorizationA k-factorization partitions the edges of the 
graph into disjoint k-factors.



A 1-factorization of K8 (7-regular graph) 
Each color is a single 1-factor, and there are 7 copies.  

 
(With Kn we denote the complete graph over n vertices) 

(Eppstein, 2011)

https://en.wikipedia.org/wiki/Graph_factorization#/media/File:Complete-edge-coloring.svg


Combinatorial  
Design

“Branch of combinatorial mathematics dealing 
with the existence, construction and properties 
of finite sets whose arrangements satisfy 
criteria of balance and symmetry.”

Applications: 
Tournaments design, software testing, algorithm design 
and analysis, networking, design of experiments, 
cryptography.



Kirkman’s schoolgirl problem 

“(KSP) 15 young ladies in a school walk out 3 
abreast for 7 days in succession: it is required 
to arrange them daily so that no two shall 
walk twice abreast.” 

 
(Kirkman, 1850) 

And more… 

Steiner triple systems 
Block designs 
Latin squares (Euler, 1723) 
Sudokus 
Balanced tournament design (BTD) 
Howell designs 
Orthogonal codes 
Covering arrays 



The Oberwolfach 
Problem

In conferences held at the Institute, 
participants usually dine together in a room 
with circular tables of different sizes, and each 
participant has an assigned seat.  
 
Gerhard Ringel asked whether there exists a 
seating arrangement for an odd number v of 
people and (v − 1)/2 meals so that each 
participant is seated next to every other 
participant exactly once.

KSP = Oberwolfach with 15 people and all tables of 3.

Gerard Ringel surfing from Wikipedia 

https://en.wikipedia.org/wiki/Gerhard_Ringel


Arranging meals: an example OP(3,6)

2 Tables respectively for 3, and 6 guests. 
Since there are 9 participants, the problem 
corresponds to the 2-factorization of K9 into  
4 disjoint copies of a factor F = [3,6]
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Difference Methods

A labeled factor F=[3,6] for the 
OP(3,6). Namely the first meal or the 

special 2-factor.

How can we generate  
2-factorization? 

We label the graph exploiting the so-called 
difference methods. Such labelling allows us to 
generate only a special 2-factor, and derive the 
remaining ones with roto-translations. 
 
Each edge inherit 2 labels, namely 2 
differences, from an algebraic operation 
between labels of adjacent nodes. 

By imposing specific rule on the set(s) of 
differences, we are able to solve the OP. 



differences Algebraic operations between node labels 
performed in a cyclic abelian group

special 2-factorThe first “well-behaved” 2-factor is the 
generator for all the other copies (2-factors)

The special 2-factor is the one having a 
difference-set with a particular configuration. 

Then… 



special 2-factor 

 The difference method approach reduces the 
problem to finding one well-structured 2-factor 

and build complete factorizations thanks to 
(roto)-translations.

Outputs 
(n-1)/2 copies of F, generated by 

a special 2-factor 



The well-structured 2-factor

Let’s consider nodes 1 and 2. There are two 
differences involved:

Plus, there is a fixed node named ∞, which does not 
produces differences nor translates in different 
factors.

ℤ2γEach node has a label in      . We seek to assign 
labels so that the difference-set is as follow:

Each difference is given by an algebraic operation 
over the cyclic group 



Our meal problem
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Exploiting symmetries

Graphs of specific orders can be further simplified 
exploiting symmetries.



2-rotational methods

2(n)-rotational difference methods, 
namely several difference sets

Two-step formulation to label the 
special 2-factor.



Combinatorial Design provides the algebraic methods to construct 
and prove the existence of 2-factorizations, exploiting difference 

methods and symmetries.

Summing up

How do we generate a specific 
well-structured 2-factor?

But

literature
Does not provide computational works for the 

OP, with the exception of Deza et al, 2008.



Our contribution, in pills

- Tackles the OP by searching for special 2-
factors, providing extensive results. 

- Exploits Constraint Programming and 
Integer Programming to model difference 
methods and symmetries (+specific algo) 

- Provides theoretical contributions 
stemming from the computed solutions 

In particular, we solve the complete 
Oberwolfach Problem with all the graphs of 
orders in [40,60]

INTEGRATE EXISTING METHODS 
WITH OPTIMIZATION TOOLS



Constraint Programming

From the complete graph Kn we extract an 
unlabelled 2-factor F

Since we are dealing with a feasibility problems where 
variables have mutually exclusive integer values.

Several (one) difference-sets inherit their 
elements from the integer labels assigned to 

vertices. 

These difference-sets should well-behave 
and fulfil certain properties. The well-
behaved labelling is the sought-after 

special 2-factor.



Several CP models

• A simple modulo translation between different 
2-factors (meals). 

• Underlying symmetries allows to work on a 
simplified graph.

1-rotational

• A more complex roto-translation links different 
2-factors (meals). 

• Each node has a label made up of two 
coordinates. 

• The labelling is decomposed in two 
subproblems. We propose a polynomial-time 
algorithm to solve the first one.

2-rotational



Combinatorial Mysteries

For the specific case of OP(23,5), is likely that 
no solution exists. Despite this fact, apparently 
no proof (either computational or analytical) 
has been published for OP(23,5).

Handbook of CD 
(Colburn and Dinitz, 2007)

Two-factorization of the Complete Graph 
(Rosa, 2003)

The oberwolfach problem and factors of uniform odd 
length cycles 

(Alspach et al., 1989)

Untersuchungen über das Oberwolfacher Problem 
(Piotrowski., 1979) 

UNPUBLISHED!

CP not effective
Our best formulation for the complete problem did 
not provide results with days of computing time 
with CP.



Exploiting IP

The OP (23, 5) is the problem of arranging 11 
people in 2 tables of 3 and 1 table of 5 for 5 
meals. Each person has a label in [0,10].  
The IP formulation enumerates every feasible 
combination of labels for tables of 3 (triplets T) 
and tables of 5 (5-sets F).  
 
Afterwards, it seeks to select for each meal, 
one 5-set and two triplets so that each node is 
seated next to every other node exactly once 
over all the meals.

The continuous relaxation has no solution!



Computational results

*For each order n of a complete graph, we solve the OP on all the configurations 
given by the integer partitions of n.

Previous results from Deza et al. (2008) solved the OP with 18≤n≤40 with 
undisclosed algorithms, running the tests on SHARCNET (namely a Compute 

Canada cluster)

We solve the OP with 40≤n≤60 on a single household machine with CPLEX 12.7 
Intel Core i5-3550 @ 3.30GHz with 4GB of RAM 

• Each instance takes less than a few seconds (w.r.t. difference method).  
• We are able to factorize graph up to the order of n=120 in less than a minute.



Table of results

For each order n of a complete graph, we solve the OP on all the configurations 
given by the integer partitions of n.



Table of results



Theoretical results

• We presented a new theorem holding on 
the existence of 1-rotational solution, 
which was suggested by the 
computational evidence. 

• We proposed a polynomial-time 
approach to solve a restricted labelling 
problem for 2-rotational methods. 

• Computational proof for OP (23, 5)

Theorem.    Let F be a 2-regular graph of order 2n 
+ 1 and let r denote the number of cycles in F of 
even length. If F satisfies the assumptions of 
Proposition 1 and its cycle passing through ∞ has 
length 3, then either n ≡ 0 (mod 4) or n−1 + r is an 
even integer. 
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Thanks!

This keynote is available at: 
www.dragotto.net

http://www.dragotto.net


Brainstorming Time


