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Outline

- A gentle introduction to Combinatorial Design.
Content ——— - Graph decompositions and the Oberwolfach Problem.
- Our contribution in pills.
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- Exploit optimization tools to solve combinatorics problems
+ Derive theoretical results from computational results
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https://en.wikipedia.org/wiki/Graph_factorization#/media/File:Complete-edge-coloring.svg

Combinatorial
Design

“Branch of combinatorial mathematics dealing
with the existence, construction and properties
of finite sets whose arrangements satisfy
criteria of balance and symmetry.”

Applications:

Tournaments design, sorftware testing, algorithm design
and analysis, networking, design of experiments,

cryptography.



THE

LADY’S AND GENTLEMAN'S

Kirkman’s schoolgirl problem q DIARY,
| FOR THE YEAR OF OUR LORD
“(KSP) 15 young ladies in a school walk out 3 1850,
abreast for 7 days in succession: it Is required Being the secand after Bissartile.
to arrange them daily so that no two shall [ DEMANKD PAINCIPALLY FOR THE AMUSENENT AND INSTACCTION OF

walk twice abreast.” \ STUDENTS IN MATHEMATICS:
COMPRINING

(Kirkman, 1850) ‘ MANY USEFUL AXD EXTERTAINING PARTICULARS,

INTERESTING TO ALL FERMINS ERQAGED IN THAT DERELIGHTICE FUORELT,

And more...

Steiner triple systems

Block designs

Latin squares (Euler, 1723)

Sudokus

Balanced tournament design (BTD)
Howell designs

Orthogonal codes

Covering arrays
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THE OXE HUNDRED AND FORTY-SEVENTH ANNUAL NUMEER.
LONDON:




Oberwolfach
dlem

In conferences held at the Institute,
participants usually dine together in a room
with circular tables of different sizes, and each
participant has an assigned seat.

Gerhard Ringel asked whether there exists a
seating arrangement for an odd number v of
people and (v — 1)/2 meals so that each
participant is seated next to every other
participant exactly once.

KSP = Oberwolfach with 15 people and all tables of 3.


https://en.wikipedia.org/wiki/Gerhard_Ringel

Arranging meals: an example OP(3,6)

2 Tables respectively for 3, and 6 guests.
Since there are 9 participants, the problem
corresponds to the 2-factorization of Ko Into
4 disjoint copies of a factor F = [3,6]




Difference Methods

A labeled factor F=[3,6] for the
OP(3,6). Namely the first meal or the
special 2-factor.

How can we generate
2-factorization?

We label the graph exploiting the so-called
difference methods. Such labelling allows us to
generate only a special 2-factor, and derive the
remaining ones with roto-translations.

Each edge inherit 2 labels, namely 2
differences, from an algebraic operation
between labels of adjacent nodes.

By imposing specific rule on the set(s) of
differences, we are able to solve the OP.



Factor




specilal 2-factor

The difference method approach reduces the
problem to finding one well-structured 2-factor
and build complete factorizations thanks to
(roto)-translations.

Outputs
(n-1)/2 copies of F, generated by
a special 2-factor




The well-structured 2-factor

Let’s consider nodes 1 and 2. There are two
differences involved:

01=1—-2=—-1 mod (y) =7 o= 1

S=2-1=1 mod (y) =1 2

Each difference is given by an algebraic operation
over the cyclic group

AF ={a—b mod (v):a,bc V(F)}

Each node has a label in Z,,. We seek to assign
labels so that the difference-set is as follow:

AF = {51,080, ..., 013,014} = {1,1,2,2,....7,7)

Plus, there is a fixed node named o, which does not
produces differences nor translates in different
factors.
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Exploiting symmetries
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Graphs of specific orders can be further simplified
exploiting symmetries.
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2-rotational methods

2(n)-rotational difference methods, Two-step formulation to label the
namely several difference sets special 2-factor.



Summing up

Combinatorial Design provides the algebraic methods to construct
and prove the existence of 2-factorizations, exploiting difference
methods and symmetries.

But

How do we generate a specific
well-structured 2-factor?

literature

Does not provide computational works for the
OP, with the exception of Deza et al, 2008.



Our contribution, in pills

- Tackles the OP by searching for special 2-
factors, providing extensive results.

- Exploits Constraint Programming and
INTEGRATE EXISTING METHODS Integer Programming to model difference

WITH OPTIMIZATION TOOLS methods and symmetries (+specific algo)

- Provides theoretical contributions
stemming from the computed solutions

In particular, we solve the complete
Oberwolfach Problem with all the graphs of
orders in [40,60]



Constraint Programming

Since we are dealing with a feasibility problems where
variables have mutually exclusive integer values.

Kopy1 = F:|F|=2n+1

From the complete graph Kn we extract an

unlabelled 2-factor F AV E {x 1 ‘ ry € E(I"\ {30})}
(0 ———————————————

Several (one) difference-sets inherit their
elements from the integer labels assigned to

vertices.
V(F) — Zgn 9 {OO}

AY 2D Zgn \ {O}
F4+n=F

These difference-sets should well-behave
and fulfil certain properties. The well-
behaved labelling is the sought-after

special 2-factor.




Several CP models

1-rotational
- A simple modulo translation between different
2-factors (meals).

- Underlying symmetries allows to work on a
simplified graph.

2-rotational

- A more complex roto-translation links different
2-factors (meals).

- Each node has a label made up of two
coordinates.

- The labelling is decomposed in two
subproblems. We propose a polynomial-time
algorithm to solve the first one.

alldifferent (V)

card(V | n;) + card(V | (n; +v27v)) =1

dF = {(na —ng2y))

alldifferent (D)

V ={n; | n; € G}
dom (V') = |0, 2)
Vn; € Z.

D =dEUdO
Vo, € V A |a, 5]

dO = {w; —n,m1 —wi2v} VYo, = |w,...,w;| € O,

n = wy + y2y
dom(D) = (0,2v)\{~}



Combinatorial Mysteries

Handbook of CD
(Colburn and Dinitz, 2007)

Two-factorization of the Complete Graph
(Rosa, 2003)

The oberwolfach problem and factors of uniform odd

length cycles
(Alspach et al., 1989)

Untersuchungen Uber das Oberwolfacher Problem
(Piotrowski., 1979)
UNPUBLISHED!

~or the specific case of OP(3,5), Is likely that
no solution exists. Despite this fact, apparently
no proof (either computational or analytical)

nas been published for OP(23,5).

CP not effective

Our best formulation for the complete problem did
not provide results with days of computing time
with CP.



Exploiting IP

min(—)

ST

The OP (?3, 5) is the problem of arranging 11 Z Fig =1 vd e D
people in 2 tables of 3 and 1 table of 5 for 5 (el
meals. Each person has a label in [O,10]. Z'Tjd =2 vd e D
The IP formulation enumerates every feasible ied
combination of labels for tables of 3 (triplets T) > Fi-flu+y Tjg-tly=1 VdeDVIEL
and tables of 5 (5-sets F). i€l jEJ

Z (Z Fid - Jaiap + Z Tiad-taiap) =1 Va0 e L/Na =0
Afterwards, it seeks to select for each meal, deD icl jed
one 5-set and two triplets so that each node is Fig, 15 € {0,1} Vicl,jeJ, de D

seated next to every other node exactly once - —
over all the meals.

The continuous relaxation has no solution!



Computational results

Previous results from Deza et al. (2008) solved the OP with 18<sn<40 with
undisclosed algorithms, running the tests on SHARCNET (hamely a Compute
Canada cluster)

*For each order n of a complete graph, we solve the OP on all the configurations
given by the integer partitions of n.

We solve the OP with 40<n<60 on a single household machine with CPLEX 12.7
Intel Core i15-3550 @ 3.30GHz with 4GB of RAM

- Each instance takes less than a few seconds (w.r.t. difference method).
- We are able to factorize graph up to the order of n=120 in less than a minute.



Table of results

Method Time (s) Partitions Solved Avg. Time (s.ms)
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For each order n of a complete graph, we solve the OP on all the configurations
given by the integer partitions of n.



Table of results
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Table 1: Computational results for the OP with n € [40, 60]. with more than 3 cycles per
Instance




Theoretical results

- We presented a new theorem holding on
the existence of 7-rotational solution,
which was suggested by the
computational evidence.

- We proposed a polynomial-time
approach to solve a restricted labelling
problem for 2-rotational methods.

« Computational proof for OP (3?3, 5)

Theorem. Let F be a2-regular graph of order 2n
+ 7 and let r denote the number of cycles in F of
even length. If F satisfies the assumptions of

Proposition 1T and its cycle passing through o has
length 3, then either n = O (mod 4) or n—17 + ris an
even integer.

e (4 =3 A wuyis odd) =
2t =0 (mod 4) V

(2t21 | Ek:wi) =0 (mod 2)
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This keynote is available at:
WWwWw.dragotto.net
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