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A Brief Overview of This Talk

are Mathematical Programming Games

do we need them, some applications, and core research questions

do we solve them in practice







What are MPGs?

D. et al (2021)

AN MPG is a (static) game among n players where each rational player
1 = 1,2,...,n solves the optimization problem

max{f'(x, x7) : x' € L'}

X

The payoff function for 1
n
fala: [ - R
j=1

's parametrized in x™°
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The payoff function for 1
n
fiodx T [] 2 - R
=1
i

S parametrized in x

The choices of I's opponents
affect its payoff

xte )

The set of actions for i

t%‘l

However, they do not affect
I's actions



max{f'(x,x™) : x' € L")

X

—ach player’s actions are represented with an

Action Representation : ;
arbitrary set X

Modeling Requirements In Mmany applications, Q! mMay INnclude a complex
set of operational requirements

MPGs provide a unified framework to represent
games from pboth AGT and Optimization

Language and Objectives




Equilibria as Solutions

A profile x = (3, ..., X" — with¥ € " for any i —
IS a Pure Nash Equilibrium (PNE) /1

fi()_Ci, )_C_i) Zfi(jei, )_C_i) V)%l = f[i

Does at least one exist? How hard is it to compute one?

How do we compute an NE, if any? And how do we select
one when multiple equilibria exist?

How efficient is this NE?

10



A Few Examples

Integer Programming Games, or games among
parametrized Integer Programs

Bilevel Programming and simultaneous games, specifically
for energy

Network Formation Games, cost-sharing games for critical
iNfrastructure development
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A Few Examples

Integer Programming Games, or games among
parametrized Integer Programs
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A for energy

Network Formation Games, cost-sharing games for critical
iNfrastructure development
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max
51

S.t.

1 1
6)61 + x,

3x11 + 2x21 <4

x! e {0,1}?
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Imax
5!

S.t.

Their products interact!

6x1 + x2 4)c1 xl + 6x2x2 nlex
3x] +2x) < 4 s.t.
x! e {0,1}7

Knapsack Games (Carvalho et al., 2022)

y)
4)61 + 2x2

2 2
2x7 + 3x5; <

x? e {0,1}2

2.1
—A A T

A

2.1
Xy Ay
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Energy

Carvalho, D., Lodi, Feljoo, Sankaranarayanan (2020)



SolarCorp Inc.

Simultaneous
Game

Hydro Inc.
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Canada taxes and regulates the production

Simultaneous
Game

SolarCorp Inc. Hydro Inc.
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SolarCorp Inc.

Seqguential
“Stackelberg” Game

Simultaneous
Game

Hydro Inc.
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Canada U.S.

Simultaneous
Game

This Is a simultaneous game among bilevel (1.e., sequential)
Orograms
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Canada U.S.

“ach 2 includes the optimality conditions of each “follower”
(l.e., producer)
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Network Formation




Network Formation Game

\ — —_ ® Givenagraph G = (V,E)

\ / e Any (h,l) € E: hlEVhasacostchl€Z+

e Player i needs to go from s' to r*

\ Player 1 a weight w!

(Chen and Roughgarden, 2006:; |
Anshelevich, et al., 2008; The cost of each edge 1S

Nisan et al., 2008)
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Core Research Questions



Istence

Iciency

jorithms

sights

Can MPGs model real-world problems?

When does at least an equilibrium exist?

How do different equilibria (solutions) in MPGs differ?

How do we compute and select equilibria?

Do equilibria promote socially-beneficial outcomes and
provide insights?
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How?
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do we use and solve them In practice
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How?

do we use and solve them In practice

Optimizing over equilibria in Integer
Programming Games

(Dragotto and Scatamacchia, 2021)
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The ZERO Regrets Algorithm

Joint work with Rosario Scatamacchia (Politecnico di Torino, ltaly)

How



Integer Programming Games

Integer Programming Games (IPGs) are MPGs where each player

1 =1,2,...,n solves
(Képpe et al., 2011)

max{u'(x,x7) :x' € L), L' = {Ax' < b, x' € Z™)

There is common knowledge of rationality, thus each player is rational
and there is complete information,
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Why IPGs?

They extend traditional resource-allocation tasks and
combinatorial optimization problems to a multi-agent setting

quantities, fixed production costs and logical

disjunctions often require discrete variables
(i.e., Bikhchandani and Mamer (199/))

Energy — Gabriel et al. (2013), David Fuller and Celebi (2017)
Supply Chain — Anderson et al. (201/)
Assortment-Price competitions — Federgruen and Hu (2015)
Kidney Exchange Problems — Carvalho et al. (2017)
Cybersecurity
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However, there are a few issues:



|Ce

Not all Nash equilibria were created eqgual
.e., Price of Stability (PoS) and Anarchy (PoA)

Restrictive assumptions on the game’s structure to
guarantee the existence/tractability

Lack of a general-purpose methodology to compute
and mostly select equilibria

: No general methodolog)
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: No general methodology, no broad use of IPGs.

The core motivation behind ZERO Regrets:

Provide a general-purpose and efficient a/gorithmic
and theoretical framework to compute, select and
enumerate Nash eqguilibria in IPGs.
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ZERO Regrets
Koeppe et al. (2011)
Sagratella (2016)

Del Pia et al. (2017)

Carvalho, D., Lodi,
Sankaranarayanan (2020)

Cronert and Minner (2021)
Carvalho et al. (2022)

Schwarze and Stein (2022)

General

=

=

J 9 « I

Enumer.

=

=

Type of NE

Select PNE NE Approx Limitations

7

=

=
=
=

=

=

Most efficient, selectio
existence, enumeratior

No (practical) algorithm
Convex payoffs
Problem-specific (unimodular)
Bilinear payoffs

NO selection, expensive, existence?

No selection/enumeration,
ex|stence?

Expensive Branch-and-Prune
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Contributions

neoretical

lgorithms

ractical

Polyhedral characterization: strategic interaction
iN terms of inegualities, polyhedral closures

Cutting plane algorithm: computes, selects,
enumerates Nash equilibria.

Several applications and methodological
oroblems
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A Lifted Space for Equilibria



Lifted Space

The sets K and & Linearize u' with some variables z and linear constraints L.

K={(z,...,2",2)eL,z" € X" foranyi=1,...,n}

proj. (conv(K)) = all the strategy profi

Let N = {x=(x',...,x") : xisa NE}. Consider the set

E={(z",...,2" 2) € conv(K) : (z',...,2™) € conv(N)}

3/



Lifted Space

I {(:Cl,...,x”,z) e conv (k) : (:Ul,...,w”) c conv(N)}

s the so-called Perfect Equilibrium Formulation

Namely, optimizing a function f : L — R over & gives the
(for any vertex of &)
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The Goal



The Goal

Given an IPG f, compute the Nash equilibrium maximizing f



The Goal

Given an IPG and f, compute the Nash equilibrium maximizing f

The Idea



The Goal

Given an IPG and f, compute the Nash equilibrium maximizing f

The Idea

Start from conv(K) and get to some intermediate polyhedron over which

optimizing fyields a point (X,2) € & withx € N



Inequalities

An inequality is an equilibrium inequality /7 i/t is valid for E

Namely, equilibrium inequalities cut off feasible strateqgies rfor
some players but neve!

W' (X <uxhx™h Ve
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Are these inequalities enough for £?



Are these inequalities enough for £?

Yes: all the inequalities together describe precisely &



Separating Equilibrium Inequalities



Equilibrium Oracle

Oracle

Given a point (X,7) and &, the equilibrium separation
problem is the task of determining that either:

x.7) e Eand v (x,7) & &£ + an equilibrium
’ inequality

'.‘
-

The Equilibrium geparation Oracle
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ZERO Regrets




ZERO Regrets

INPUT: An IPG Instance and a function f
OUTPUT: A PNE Xx

A set of inequalities ® ={0<1}
While (STOP)
(x,zZ) =arg max {f(x,z):(z,2z) € conv(k), &}

zl, ... a". 2

If &(X,Z7) says : X is the PNE maximizing f

Else % (X,7) says
add at least a violated equilibrium

inequality to @
49



ZERO Regrets

INPUT: An IPG Instance and a function f
OUTPUT: A PNE Xx

A set of inequalities ® ={0<1}
While (STOP)
(z,z) =arg max {f(x,2):(x,z) € conv(K), P}

TE A

If @(X,2) says . X is the PNE maximizing f

Else % (X,7) says
add at least a violated equilibrium

inequality to @
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ZERO Regrets

INPUT: An IPG Instance and a function f
OUTPUT: A PNE Xx

A set of inequalities ® ={0<1}
While (STOP)
(x,zZ) =arg max {f(x,z):(z,2z) € conv(k), &}

zl, ... a". 2

If &(X,2) says . X is the PNE maximizing f

Else «(X,7) says
add at least a violated equilibrium
inequality to @

ol



Applications



Applications

Applications Baselines Select Enumer. Improvement

Packing, Assortment

o . . (2021, 2022 A
Optimization Carvalho et al. (2021, 2022) N.A

Knapsack Game

Chen and Roughgarden

(I\Elletwork Formation Nletvg;quTC det5|gn£ the Internet, O0B). Anshe evicr =t al 7 NN
ames Cloua Infrastructure (2008), Nisan et al. (2008)
Facility Location Games Retall, cloud service Cronert and Minner (2021) ¥ >o0X
provisioning
Quadratic Integer Mostly methodological Sagratella (2016), Schwarze 7 7 10x% to 600x

Games and Stein (2022)



Knapsack Game (KPG)

As for Wizard and Fairy, each player solves a binary Knapsack problem
With some interaction terms in the objective

max{i '+ Z ZC,EJ o le’x’<blx E{Ol}m}
j=1 J=

k=1,k#i j=1

o4



Knapsack Game (KPG)

A few facts:

e NoO successful attempts to enumerate or
select equilibria in KPGs with n > 2 and
m > 4 (Cronert and Minner (2021))

e Carvalho et al. (2021, 2022) only compute
an MNE with at mostn =3, m < 40

e No results on the complexity of the KPG,
nor its PoS/PoA

We select PNEs withn > 2, m > 50
We provide “packing” eqguilibrium inequalities

We prove it Is Zg—complete to determine if a

PNE exists + the PoS/PoA are arbitrarily bad

00



Knapsack Game (KPG)

—qullibrium inegualities may also capture specific structures or constraint
types.

> Payoff Inequalities

A fact N a packing problem, often the all-zeros strategy
s feasible with objective 0

A consequence  Let &; be a subset of I's opponents. If 4&’; so that

p; + Z C,;j <0,
kes’
then, x]l + Z xjk < \cS)]l:\ IS an equilibi

kecS’J’-

056



Knapsack Game

— PoS Time (s) B Time lst (s)

1.05 1600.00

1400.32

1.04 1200.00
>
=
Qo
(0]
jd
:’_’ 1.02 300.00
o 66613
§ 548
= 475.49

1.01 4036 - 400.00

- 60 25 | 110.32
0.190.07 2.350.45 18.903 3 mm 0/11.04 . - 0.00

(2,25) (2,50) (2,75 (2,100) (3,25 (3,50) (3,75 (3,100)
(n,m)

Average Time



Network Formation Game

min{ g S~ vzt e F')
% T
Y (hl)eE £ek=1"hi

A few facts:

e No algorithms to select equilibria in
arbitrary NFGs

e Several bounds on PoS/PoA in some
specific instances

e \We consider the weighted version with
n=23
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Network Formation Game

— PoS Time (s) Time 1st (s)
1.07
643.52

1.06 \
>,
-
e
K 354.43
N 104 '
Y
o
Q
L
p -
o

1.03

378]
0.04 196
50-100 150-200 250-300 350-400 450-500

Number of nodes

/700.00

525.00

350.00

175.00

0.00

Average Time
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Facility Location and Desigh Game

Sellers (players) compete for the demand of
customers located Iin a given geographical

@ area. Each player decides:
e Where to open its selling facilities
3 = e What assortment to sell (i.e., what design)

? 1
ZZEL ZTERl uljrmlr
Imax E wj
:I;Z

n P Share of customers’ demand
Zk—l SIZEL ZreRz WUyl

jEJ lr

—

e

s.t. Z Z flal < B, Budget
leL reR;
Aboolian et al. (2007), P - :
Cronert and Minner (2020), Z r,. <1 Vlel, One facility per location

re Ry

ri €40,1} VIie€ L Vr € Ry

o0



Facility Location and Desigh Game

B ERO Regrets

n =72, Small

n =2, Big

n =3, Small

n = 3, Big

“Only PNEs

-4.42 secondas

64

Cronert and Minner (2020)

*Also MNEs, existence?

.92 seconds

as

G 7115 seconds
@R 15 00 secon

283.32 seconds

96.00 secondads

Average Time (S)
(Bar-lengths are in log-scale)

20,969.56 seconds

36,9/8.714 seconds

ol



Quadratic Integer Games

|

x’L

ZERO Regrets

Schwarze and Stein
(2022)

Fach player 1 solves:

min{i(aji)TQixi +(C'z™) 2"+ (") 'z LB<z'<UB, z' € Z™}.

Schwarze and Stein (2022), Sagratella (2016)

Convex Objectives Non-Convex Objectives
413 seconds 101 seconds
Nno time-limits (1h) Nno time-limits (1h)
64553 secondss 6580/ seconds
138 time-limits (1h) 138 time-limits (1h)

Y






Some Remarks

In MPGs, the plausibility of the Nash equilibrium can
only stem from the availability of efficient tools to
compute it

lable and flexible imize over Equilibria

o4



Beyond ZERO Regrets






If non-convexities are not necessarily integer:

max{f' (x,x™) = (c)'x'+ (x)'C'x" : x' € I}

X

So-called Reciprocally-Bilinear Games

Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, Sriram Sankaranarayanan, The Cut and
Play Algorithm. Computing Nash Equilibria via Outer Approximations, arXiv:2111.05726



An MPG library

VA=

( ’ https:/github.com/ds4dm/ZERO

Gabriele Dragotto, Sriram Sankaranarayanan, Margarida Carvalho, Andrea Lodl, ZERO. Playing
Mathematical Programming Games, arXiv:2111.07932

o3



Directions

othodology

ractice

Developments of efficient algorithms and
theoretical frameworks to handle general non-
convexities

Rational behavior through inequalities and
Optimization, new solutions concepts

Learning the parametrized problems of each player

MPGs and applications

Companies, governments, and in general,
organizations are likely to solve optimization
oroblems. Trade-off selfishness and social good

09



Gabriele Dragotto and Rosario Scatamacchia, The ZERO Regrets Algorithm. Optimizing over
Pure Nash Equilibria via Integer Programming, arXiv:2111.06382

WWW.Aragotto.net
@GabrieleDrag8
gabriele.dragotto@polymtl.ca



http://www.dragotto.net
mailto:gabriele.dragotto@polymtl.ca
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How do we compute an NE, if any? And how do we select
one when multiple equilibria exist?

Computing one is often difficult, selecting
one is even more challenging.




A Quick Comparison

Equilibrium Programming

Often L is continuous

Algos: Complementarity or V.I.

Global convergence?
Non-convexities?
v Efficient in well-behaved cases

Normal/Extensive-form games

NoO complex operational constraints

Explicit (and burdensome)
representation of action sets

v Popular in Game Theory literature

/0



max
51

S.t.

Their items interact!

6x; + x, — 4x, X7 + 3%, x5 max 4x7 + 2x;
3x] +2x, < 4 s.t. 3x; 4+ 2x; <
x' € {0,1} x> € {0,1}

How good is a NE? Can we select one?

2.1
—A A T

4

2.1
Xy Ay

/7



The “central” authority



max 6x] +x; —dx]x? + 6x)x7 max 4x + 2x5 —xix] — x3x,
s X
s.t. 3x +2x; <4 st 3x7+2x} <4
x!' € {0,1}? x* € {0,1}?

(%}, %) = (1,0) and (1, %3) = (1,0) with W=2+3 =5

xLxh)=1,00and B2 =01) W=6+2=38
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Optimal Social

Welfare

"Best" N

Optimal Social

Welfare

"Worst" NE

PoS

PoA

30



The Closure

THEOREM

The equilibrium closure of conv(K) given by the set of
equilibrium inequalities from berore is given by:

: u' (2t 7" < ul(at,

where BR(i,z~") are the best-responses of i given X7\ Then:
e P¢is arational polyhedron, and
o iNt(P°) contains no points (x,2) : x € Z™ and
o P¢=¢

S



Equilibrium Separation Oracle

INPUT: A profile (X, Z) and an IPG Instance
OUTPUT: or

For every player i=1,2,...,n

£ — max{u'(x,x7) : Alx' < b, x' € Z™)
xl

If u'@,x7Y) > u'(@,x7Y):

Add u'(®,x7H < u'(x,x7Y to @

If & is empty: return

Else: return

32



MNEs and Approximate Equilibria




Other Equilibria

An inequality is an equilibrium inequality /7 i/t is valid for E

This includes, by definition, any pure strategy appearing in at
least an MNE

Adding a to any eqguilibrium ineguality =

u' (@, x7) —y < u'(x',x7

34



(n, 1

(2, 25, A)
(2, 25, B)
(2, 25, C)
(2, 50, A)
(2, 50, B)
(2, 50, C)
(2,75, A)
(2, 75, B)
(2,75, C)
(2,100, A)
(2, 100, B)
(2, 100, C)

e
14.67/

17.55
29.35
20.00
206.6/
/2.67
33.00
100.67
N2.67
25.35
205.55
097.35

Knapsack Game

TIim

0.06
0.12
0.59
0.2°
0.5
0.34
0.60
3.32
A47.75
0.76
220.42

1205.29

P¢
1.04
1.02
1.06
1.02
1.01
1.08
1.00
1.02
1.08
1.01
1.01
1.05

0/3
0/3
0/3
0/ 3
0/3
0/3
0/3
0/3
0/ 3
0/3
0/3
2/3

(n, 1 HEC

(3, 25, A) 31.00
(3, 25, B) 44.00
(3, 25, C) 91.00
(3, 50, A) 95.00
(3,50,B) 206.00
(3, 50, C) 148.00
(3, 75, A) 64.00
(3, 75, B) 278.00
(3, 75, C) 173.00
(3,100, A) 261.00
(3,100,B) 479.00
(3,100, C) 184.00

Tim

0.2]

0.55
29.78
18.39

026.45
332.24

4.065
982.97
058.77

1200.65
1800.00

1200.31
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(n, m,

(2, 25, A)
(2, 25, B)
(2, 25, C)
(2, 50, A)
(2, 50, B)
(2, 50, C)
(2,75, A)
(2,75,B)
(2,75, C)
(2,100, A)
(2,100, B)
(2,100, C)

Telly
14.67

17.55
29.35
20.00
206.6/
/2.67
33.00
100.67
N2.67
25.35
205.55
097.35

Knapsack Game

Time (

0.06
0.12
0.59
0.2°
0.5
0.34
0.60
3.32
A47.75
0.76
220.42

1205.29

Po!
1.04
1.02
1.06
1.02
1.01
1.08
1.00
1.02
1.08
1.01
1.01
1.05

HTI

0/3
0/3
0/3
0/ 3
0/3
0/3
0/3
0/3
0/ 3
0/3
0/3
2/3

(n, m, HEQIr

(3, 25, A) 31.00
(3, 25, B) 44.00
(3, 25, C) 91.00
(3, 50, A) 95.00
(3,50,B) 206.00
(3, 50, C) 148.00
(3, 75, A) 64.00
(3, 75, B) 278.00
(3, 75, C) 175.00
(3, 100, A) 261.00
(3,100, B) 4/9.00
(3,100, C) 184.00

Time (

0.2]

0.55
29.78
18.39

026.45
332.24

4.065
982.97
058.77

1200.65
1800.00

1200.3]

PO

1.01
1.02
1.26
[HOK
1.01
1.02
1.01

HTI

0/3
0/3
0/3
O/ 3
1/3
0/3
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(n, ir

(2, 25, A)
(2, 25, B)
(2, 25, C)
(2, 50, A)
(2, 50, B)
(2, 50, C)
(2,75, A)
(2,75, B)
(2,75, C)
(2,100, A)
(2, 100, B)
(2, 100, C)

Hel
14.67

17.55
29.35
20.00
206.6/
/2.67
33.00
100.67
N2.67
25.35
205.55
097.35

Knapsack Game

TiMme

0.06
0.12
0.59
0.2°
0.5
0.54
0.60
3.32
A47.75
0.76
220.42

1205.29

Pc
1.04
1.02
1.06
1.02
1.01
1.08
1.00
1.02
1.08
1.01
1.01
1.05

#1
0/3
0/3
0/3
0/ 3
0/3
0/3
0/3
0/3
0/ 3
0/3
0/3
2/3

(n, ir HEQ

(3, 25, A) 31.00
(3, 25, B) 44.00
(3, 25, C) 91.00
(3, 50, A) 95.00
(3,50,B) 206.00
(3, 50, C) 148.00
(3, 75, A) 64.00
(3, 75, B) 278.00
(3, 75, C) 175.00
(3,100, A) 261.00
(3,100, B) 4/9.00
(3,100, C) 184.00

TiMme

0.21
0.53
29.78
13.39
026.45
332.24
4.65
982.9/
058.77

1200.65
1800.00

1200.31

3/



(n, n

(2, 25, A)
(2, 25, B)
(2, 25, C)
(2, 50, A)
(2, 50, B)
(2, 50, C)
(2,75, A)
(2,75, B)
(2,75, C)
(2,100, A)
(2, 100, B)
(2, 100, C)

EQ!
14.67

17.55
29.35
20.00
206.6/
/2.67
33.00
100.67
N2.67
25.35
205.55
097.35

Knapsack Game

Time

0.06
0.12
0.59
0.2°
0.5
0.34
0.60
3.32
A47.75
0.76
220.42

1205.29

Pc
1.04
1.02
1.06
1.02
1.01
1.038
1.00
1.02
1.038
1.01
1.01
1.05

H1

0/3
0/3
0/3
0/ 3
0/3
0/3
0/3
0/3
0/ 3
0/3
0/3
2/3

(n, n HEC

(3, 25, A) 31.00
(3, 25, B) 44.00
(3, 25, C) 91.00
(3, 50, A) 95.00
(3,50,B) 206.00
(3, 50, C) 148.00
(3, 75, A) 64.00
(3, 75, B) 278.00
(3, 75, C) 175.00
(3,100, A) 261.00
(3,100, B) 4/9.00
(3,100, C) 184.00

Time

0.2]

0.55
29.78
18.39

026.45
332.24

4.065
982.97
058.77

1200.65
1800.00

1200.31

Pc

1.01
1.02
1.26
1.03
1.01
1.02
1.01

H1

0/3
0/3
0/3
O/ 3
1/3
0/3

383



Network Formation Game

(vli, EQI

(50, 99) 0.00
(100, 206) 2.35
(150, 308) ©6.00
(200, 416) Tl.o/

(250, 517) ©64.67/

LI

0.04

0.05

0.04

3.23

03.50

T-1

0.04

0.04

OR%US

1.1

16.07/

PcC

112

1.00

1.01

1.06

1.02

T
0/3
0/ 3
0/3
0/3

0/3

(vli, EQI

(300, 626) 21.00
(350, 730) 19.00
(400, 822) 24806/
(450, 934) 3940/

(500, 1060) 35.67/

T (

1211

13.92

094.95

1199.93

SYAOV/

T-1

2.04

/.42

228.69

2.0]

/.25

PC T
1.04 0O/3
1.01 O/3
1.08 1/3
111 2/3

1.00 0O/3

39



Network Formation Game

(vli, EQI

(50, 99) 0.00
(100, 206) 2.35
(150, 308) ©6.00
(200, 416) Tl.o/

(250, 517) ©64.67/

T(

0.04

0.05

0.04

3.23

03.50

T-1

0.04

0.04

OR%US

1.1

16.07/

Po

112

1.00

1.01

1.06

1.02

T|
0/3
0/ 3
0/3
0/3

0/3

v, EQI

(300, 626) 21.00
(350, 730) 19.00
(400, 822) 248.67
(450, 934) 394.67

(500,1060) 35.6/

T(

1211

13.92

094.95

1199.93

SYAOV/

T-1

2.04

/.42

228.69

2.0]

/.25

PoS T
1.04 0O/3
1.01 O/3
1.08 1/3
111 2/3

1.00 0O/3

90



Network Formation Game

(vli, el

(50, 99) 0.00
(100, 206) 2.35
(150, 308) ©6.00
(200, 416) Tl.o/

(250, 517) ©64.67/

T (

0.04

0.05

0.04

3.23

03.50

T-1

0.04

0.04

OR%US

1.1

16.07/

[N~

1.00

1.01

1.06

1.02

0/3
0/ 3
0/3
0/3

0/3

v, e]

(300, 626) 21.00
(350, 730) 19.00
(400, 822) 248.67
(450, 934) 394.67

(500,1060) 35.67/

LI

1211

13.92

094.95

1199.93

SYAOV/

T

2.04

/.42

228.69

2.0]

/.25

T
1.04 0O/3
1.01 O/3
1.08 1/3
111 2/3

1.00 0O/3

91



max
51

S.t.

Best-responses

6x11 + le —4)611)612 + 6x21x22

3x11 -+ 2x21 <4
x! e {0,1}?

max
2

S.t.

2 2 2.1

3x12 + 2x22 <4
x> € {0,1}?

(0,0) (1,0) 2

2..1

— Ay Xy

92



max
51

S.t.

6x11 + le —4)611)612 + 6x21x22

3x; +2x, < 4
x! e {0,1}?

(0,0)
(1,0)
(2)

0

6

]

y) y) 2.1 2.1
nilex 4)61 + 2x2 —X{X; — XX,

st. 3xf+2x5 <4
2 x? € {0,1}?

93



) ) 2.1 2.1
mezlx 4x1 + 2x2 —X{X; — XX,

X

st. 3x7+2x5 <4
x? e {0,1}?

® 1.2
)

e —————_—_—_— ——
|G, 10 2

()

6

]

94



1 1 1.2 1.2
mzllx 6x1 + x, —4x1 X; + 6x2x2

X )C2
S.t. 3x11 + 2)621 <4
x! e {0,1}?
|
0.1) (5D xl
® (1)
2
— —_—

95



1l 1,.2 1,2 ) 2 _ 2.1 _ 2.1
Irizllx Ox; +x, —4x x{ + 6x,x; Hi%x Axp +2x5 —Xpx) =55

s.t. 3x] +2x, <4 st.  3xf+2x <4
x! e {0,1})7 x? e {0,1}?

(0,0) (1,0) 2

96



