Mathematical Programming Games

Gabriele Dragotto Optimization/ECE Seminar - May 17th, 2022

Mathematical Programming

MIP

Algorithmic Game Theory (AGT)

MathematicalProgrammingGames(MPGs)

A Brief Overview of This Talk

do we *solve* them in practice

do we need them, some applications, and core research questions

What are MPGs?

What are MPGs?

 $\max_{x^i} \{ f^i(x^i, x^{-i}) : x^i \in \mathcal{X}^i \}$

The payoff function for i $f^i(x^i, x^{-i}) : \prod^n \mathscr{X}^j \to \mathbb{R}$ j=1 Is parametrized in x^{-i}

D. et al (2021)

An **MPG** is a (static) **game** among *n* players where each **rational** player i = 1, 2, ..., n solves the optimization problem

> The set of actions for *i* \mathscr{X}^{i}

The payoff function for i $f^{i}(x^{i}, x^{-i}): \prod^{n} \mathcal{X}^{j} \to \mathbb{R}$ i=1is parametrized in x^{-i}

The choices of i's opponents affect its payoff

The set of actions for *i* \mathscr{X}^{i}

However, they do not affect *i*'s actions

 $\max_{x^i} \{ f^i(x^i, x^{-i}) : x^i \in \mathcal{X}^i \}$

Modeling Requirements

Language and Objectives

Each player's actions are represented with **an** arbitrary set \mathcal{X}^{ι}

In many applications, \mathscr{X}^i may include a **complex** set of operational requirements

MPGs provide a **unified framework** to represent games from both AGT and Optimization

Equilibria as Solutions

Does at least one exist? How hard is it to compute one?

How do we compute an NE, if any? And how do we select one when multiple equilibria exist?

How efficient is this NE?

A profile $\bar{x} = (\bar{x}^1, ..., \bar{x}^n) - with \ \bar{x}^i \in \mathcal{X}^i$ for any i - iis a Pure Nash Equilibrium (PNE) if

 $f^{i}(\bar{x}^{i}, \bar{x}^{-i}) \ge f^{i}(\hat{x}^{i}, \bar{x}^{-i}) \quad \forall \hat{x}^{i} \in \mathcal{X}^{i}$

A Few Examples

Integer Programming Games, or games among parametrized Integer Programs

Bilevel Programmi for energy

Network Formation Games, cost-sharing games for critical infrastructure development

Bilevel Programming and simultaneous games, specifically

A Few Examples

Integer Programming Games, or games among parametrized Integer Programs

Bilevel Programmi for energy

Network Formation Games, cost-sharing games for critical infrastructure development

Bilevel Programming and simultaneous games, specifically

Open 2 Convenience Stores

 $6x_1^1 + x_2^1$ \max_{x^1} s.t. $3x_1^1 + 2x_2^1 \le 4$ $x^1 \in \{0,1\}^2$

 $\max_{x^1} \quad 6x_1^1 + x_2^1 - 4x_1^1x_1^2 + 6x_2^1x_2^2$ s.t. $3x_1^1 + 2x_2^1 \le 4$ $x^1 \in \{0,1\}^2$

Knapsack Games (Carvalho et al., 2022)

Their products **interact**!

 $\max_{x^2} \quad 4x_1^2 + 2x_2^2 - x_1^2 x_1^1 - x_2^2 x_2^1$ s.t. $2x_1^2 + 3x_2^2 \le 4$ $x^2 \in \{0,1\}^2$

Carvalho, D., Lodi, Feijoo, Sankaranarayanan (2020)

SolarCorp Inc.

Simultaneous Game

Hydro Inc.

Canada taxes and regulates the production

SolarCorp Inc.

Simultaneous Game

Hydro Inc.

SolarCorp Inc.

Sequential "Stackelberg" Game

> Simultaneous Game

Hydro Inc.

This is a simultaneous game among bilevel (i.e., sequential) programs

Each \mathscr{X}^i includes the optimality conditions of each "follower" (i.e., producer)

Network Formation

Network Formation Game

(Chen and Roughgarden, 2006; Anshelevich, et al., 2008; Nisan et al., 2008)

The cost of each edge is split proportionally to each player's weight

Given a graph G = (V, E):

• Any $(h, l) \in E : h, l \in V$ has a cost $c_{hl} \in \mathbb{Z}^+$

• Player *i* needs to go from s^i to t^i

Player *i* has a weight wⁱ

Core Research Questions

Can MPGs model real-world problems?

When does at least an equilibrium exist?

How do different equilibria (solutions) in MPGs differ?

How do we compute and select equilibria?

Do equilibria promote socially-beneficial outcomes and

are Mathematical Programming Games

do we need them, some applications, and core research questions

do we use and *solve* them in practice

How

do we use and solve them in practice

Optimizing over equilibria in Integer **Programming Games**

(Dragotto and Scatamacchia, 2021)

ZERO Regrets

The ZERO Regrets Algorithm

Joint work with **Rosario Scatamacchia** (Politecnico di Torino, Italy)

How

Integer Programming Games

$\max_{x^{i}} \{ u^{i}(x^{i}, x^{-i}) : x^{i} \in \mathcal{X}^{i} \}, \, \mathcal{X}^{i} := \{ A^{i}x^{i} \le b^{i}, x^{i} \in \mathbb{Z}^{m} \}$

There is **common knowledge of rationality**, thus each player is **rational** and there is **complete information**,

Integer Programming Games (IPGs) are MPGs where each player $i = 1, 2, \dots, n$ solves (Köppe et al., 2011)

Why IPGs?

They extend traditional resource-allocation tasks and combinatorial optimization problems to a multi-agent setting

Indivisible quantities, fixed production costs and logical disjunctions often require discrete variables (i.e., Bikhchandani and Mamer (1997))

Energy — Gabriel et al. (2013), David Fuller and Çelebi (2017) **Supply Chain** — Anderson et al. (2017) **Assortment-Price competitions** — Federgruen and Hu (2015) **Kidney Exchange Problems** – Carvalho et al. (2017) Cybersecurity

However, there are a few issues:

Selection

Not all Nash equilibria were created equal i.e., Price of Stability (PoS) and Anarchy (PoA)

Tractability

Existence

Methodology

Lack of a general-purpose methodology to compute and mostly **select** equilibria

Restrictive assumptions on the game's structure to guarantee the existence/tractability

No general methodology, no broad use of IPGs.

The core motivation behind ZERO Regrets:

Provide a general-purpose and efficient *algorithmic and theoretical* framework to **compute, select and enumerate** Nash equilibria in IPGs.

No general methodology, no broad use of IPGs.

	General	Enumer.	Select	PNE	NE	Approx	Limitations
ZERO Regrets							Most efficient, selection, existence, enumeration
Koeppe et al. (2011)							No (practical) algorithm
Sagratella (2016)							Convex payoffs
Del Pia et al. (2017)							Problem-specific (unimodular)
Carvalho, D., Lodi, Sankaranarayanan (2020)							Bilinear payoffs
Cronert and Minner (2021)							No selection, expensive, existence?
Carvalho et al. (2022)							No selection/enumeration, existence?
Schwarze and Stein (2022)							Expensive Branch-and-Prune

Type of NE

34

Contributions

Algorithms

Cutting plane algorithm: computes, *selects*, enumerates Nash equilibria.

Practical

Several applications and methodological problems

Polyhedral characterization: strategic interaction in terms of inequalities, polyhedral closures

A Lifted Space for Equilibria
Lifted Space

The sets ${\cal K}$ and ${\cal E}$

Linearize u^i with some variables z and linear constraints \mathcal{L} .

 $\mathcal{K} = \{ (x^1, \dots, x^n, z) \in \mathcal{L}, x^i \in \mathcal{X}^i \text{ for any } i = 1, \dots, n \}$ $\operatorname{proj}_{r}(\operatorname{conv}(\mathscr{K})) = \operatorname{all the strategy profiles}$

Let $\mathcal{N} := \{x = (x^1, \dots, x^n) : x \text{ is a NE}\}$. Consider the set

 $\mathcal{E} = \{ (x^1, \dots, x^n, z) \in \operatorname{conv}(\mathcal{K}) : (x^1, \dots, x^n) \in \operatorname{conv}(\mathcal{N}) \}$

Lifted Space

The sets ${\cal K}$ and ${\cal E}$

$\mathcal{E} = \{ (x^1, \dots, x^n, z) \in \operatorname{conv}(\mathcal{K}) : (x^1, \dots, x^n) \in \operatorname{conv}(\mathcal{N}) \}$

Is the so-called Perfect Equilibrium Formulation

Namely, optimizing a function $f:\mathcal{K} \to \mathbb{R}$ over \mathcal{E} gives the Nash equilibrium maximizing f (for any vertex of \mathcal{E})

Given an IPG f, compute the Nash equilibrium maximizing f

The Goal

The Goal Given an IPG and f, compute the Nash equilibrium maximizing f

The Idea

The Goal

Given an IPG and f, compute the Nash equilibrium maximizing f

The Idea

Start from $\operatorname{conv}(\mathcal{K})$ and get to some *intermediate polyhedron* over which optimizing f yields a point $(\bar{x}, \bar{z}) \in \mathcal{E}$ with $\bar{x} \in \mathcal{N}$

Inequalities

Equilibrium Inequality

An inequality is an equilibrium inequality if it is valid for ${\cal E}$

Namely, equilibrium inequalities *cut off feasible strategies for* some players but never equilibrium profiles!

$u^{i}(\tilde{x}^{i}, x^{-i}) \leq u^{i}(x^{i}, x^{-i}) \quad \forall \tilde{x}^{i} \in \mathcal{X}^{i}$

Are these inequalities enough for ${\cal E}$?

Are these inequalities enough for \mathcal{E} ?

Yes: all the inequalities together describe precisely ${\cal E}$

Separating Equilibrium Inequalities

Equilibrium Oracle

Given a point (\bar{x}, \bar{z}) and \mathcal{E} , the equilibrium separation **problem** is the task of determining that either:

 $(\bar{x}, \bar{z}) \notin \mathcal{E}$ + an equilibrium inequality

INPUT: An IPG Instance and a function f**OUTPUT:** A PNE \bar{x}

A set of inequalities $\Phi = \{0 \le 1\}$ While (STOP) $(\bar{x},\bar{z}) = \arg\max_{x^1,\dots,x^n,z} \{f(x,z) : (x,z) \in \operatorname{conv}(\mathcal{K}), \Phi\}$

If $\bigoplus(\bar{x},\bar{z})$ says yes: \bar{x} is the PNE maximizing f Else $\bigcirc(\bar{x},\bar{z})$ says no: add at least a violated equilibrium inequality to Φ

INPUT: An IPG Instance and a function f**OUTPUT:** A PNE \bar{x}

A set of inequalities $\Phi = \{0 \le 1\}$ While (STOP) $(\bar{x}, \bar{z}) = \arg \max_{x^1, \dots, x^n, z} \{f(x, z) : (x, z) \in \mathbb{R}\}$

If $\bigcirc(\bar{x}, \bar{z})$ says yes: \bar{x} is the PNE maximizing fElse $\bigodot(\bar{x}, \bar{z})$ says no: add at least a violated equilibrium inequality to Φ

$$(z, z) : (x, z) \in \operatorname{conv}(\mathcal{K}), \Phi$$

INPUT: An IPG Instance and a function f**OUTPUT:** A PNE \bar{x}

A set of inequalities $\Phi = \{0 \le 1\}$ While (STOP) $(\bar{x}, \bar{z}) = \arg \max_{x^1, \dots, x^n, z} \{ f(x, z) : (x, z) \in \operatorname{conv}(\mathcal{K}), \Phi \}$

If (\bar{x}, \bar{z}) says yes: \bar{x} is the PNE maximizing f Else $\bigcirc(\bar{x},\bar{z})$ says no: add at least a violated equilibrium inequality to Φ

Applications

Applications

Knapsack Game

Packing, Assortment Optimization

Network Formation Games Network design, the Internet, cloud infrastructure

Facility Location Games

Retail, cloud service provisioning

Quadratic Integer Games

Mostly methodological

Baselines	Select	Enumer.	Improvemen
Carvalho et al. (2021, 2022)			N.A.
Chen and Roughgarden (2006), Anshelevich, et al. (2008), Nisan et al. (2008)			N.A.
Cronert and Minner (2021)			>50×
Sagratella (2016), Schwarze and Stein (2022)			10x to 600x

Knapsack Game (KPG)

$$\max_{x^{i}} \left\{ \sum_{j=1}^{m} p_{j}^{i} x_{j}^{i} + \sum_{k=1, k \neq i}^{n} \sum_{j=1}^{m} C_{k,j}^{i} x_{j}^{i} x_{j}^{k} : \sum_{j=1}^{m} w_{j}^{i} x_{j}^{i} \le b^{i}, \mathbf{x}^{i} \in \{0,1\}^{m} \right\}$$

As for Wizard and Fairy, each player solves a binary Knapsack problem with some interaction terms in the objective

Knapsack Game (KPG)

A few facts:

- No successful attempts to enumerate or select equilibria in KPGs with n > 2 and m > 4 (Cronert and Minner (2021))
- Carvalho et al. (2021, 2022) only compute **an MNE** with at most $n = 3, m \le 40$
- No results on the complexity of the KPG, nor its *PoS/PoA*

We select PNEs with n > 2, m > 50We provide "packing" equilibrium inequalities

We prove it is Σ_2^p -complete to determine if a PNE exists + the PoS/PoA are arbitrarily bad

Knapsack Game (KPG)

Equilibrium inequalities may also capture specific structures or constraint types.

Strategic Payoff Inequalities

A fact

is feasible with objective 0

A consequence

 $k \in \mathcal{S}_i^i$

- In a packing problem, often the all-zeros strategy
- Let \mathcal{S}_i be a subset of i's opponents. If $\exists \mathcal{S}_i$ so that

$$\sum_{k\in\mathcal{S}_{j}^{i}}^{i}+\sum_{k\in\mathcal{S}_{j}^{i}}C_{k,j}^{i}<0,$$

then, $x_j^i + \sum x_j^k \le |\mathcal{S}_j^i|$ is an **equilibrium inequality**.

Knapsack Game

(n,m)

Network Formation Game

G = (V, E)

 $\min_{x^i} \{ \sum_{(h,l)\in E} \frac{c_{hl} x^i_{hl}}{\sum_{k=1}^n x^k_{hl}} : x^i \in \mathcal{F}^i \}.$

A few facts:

- No algorithms to **select** equilibria in arbitrary NFGs
- Several bounds on *PoS/PoA* in some specific instances
- We consider the **weighted version** with n = 3

Network Formation Game

Number of nodes

Facility Location and Design Game

Sellers (players) compete for the demand of customers located in a given geographical area. Each player decides:

Aboolian et al. (2007), Cronert and Minner (2020), • Where to open its selling facilities • What assortment to sell (i.e., what design)

$$\frac{\sum_{l\in L}\sum_{r\in R_l}u_{ljr}^ix_{lr}^i}{\sum_{k=1}^n\sum_{l\in L}\sum_{r\in R_l}u_{ljr}^kx_{lr}^k}$$

s.t. $\sum \sum f_{lr}^i x_{lr}^i \le B^i$,

 $\sum x_{lr}^i \le 1 \quad \forall l \in L,$

Share of customers' demand

Budget

One facility per location

 $x_{lr}^i \in \{0, 1\} \quad \forall l \in L, \forall r \in R_l.$

Facility Location and Design Game

ZERO Regrets *Only PNEs

n=2, Small

n = 2, Big

n = 3, Small

n = 3, Big

Cronert and Minner (2020) *Also MNEs, existence?

Average Time (s) (Bar-lengths are in log-scale)

Quadratic Integer Games

Each player i solves:

 $\min_{i} \{ \frac{1}{2} (x^{i})^{\top} Q^{i} x^{i} + (C^{i} x^{-i})^{\top} x^{i} + (c^{i})^{\top} x^{i} : LB \le x^{i} \le UB, \ x^{i} \in \mathbb{Z}^{m} \}.$

Convex Objectives

413 seconds no time-limits (1h)

ZERO Regrets

Schwarze and Stein (2022)

Schwarze and Stein (2022), Sagratella (2016)

64553 seconds 13 time-limits (1h) **Non-Convex Objectives**

101 seconds no time-limits (1h)

65807 seconds 13 time-limits (1h)

Remarks, Ideas, Directions

Some Remarks

In MPGs, the plausibility of the Nash equilibrium can only stem from the availability of **efficient tools** to compute it.

Optimization Framework

Scalable and flexible

Optimize over Equilibria

Beyond ZERO Regrets

IPGs

Finite Games

RBGs

IPGs

RBGs

Finite Games

Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, Sriram Sankaranarayanan, The Cut and Play Algorithm: Computing Nash Equilibria via Outer Approximations, arXiv:2111.05726

If non-convexities are not necessarily integer: $\max_{x^{i}} \{ f^{i}(x^{i}, x^{-i}) = (c^{i})^{\mathsf{T}} x^{i} + (x^{-i})^{\mathsf{T}} C^{i} x^{i} : x^{i} \in \mathcal{X}^{i} \}$

So-called Reciprocally-Bilinear Games

An MPG library

Mathematical Programming Games, arXiv:2111.07932

https://github.com/ds4dm/ZERO

Gabriele Dragotto, Sriram Sankaranarayanan, Margarida Carvalho, Andrea Lodi, ZERO: Playing

Directions

Methodology

convexities

Practice

Fairness

- Developments of efficient algorithms and theoretical frameworks to handle general non-
- Rational behavior through inequalities and **Optimization**, new solutions concepts
- **Learning** the parametrized problems of each player
- **MPGs** and applications
- Companies, governments, and in general, organizations are likely to solve optimization problems. Trade-off *selfishness and social good*

Methodology

Pure Nash Equilibria via Integer Programming, arXiv:2111.06382

Practice

Fairness

Gabriele Dragotto and Rosario Scatamacchia, The ZERO Regrets Algorithm: Optimizing over

www.dragotto.net @GabrieleDrag8 gabriele.dragotto@polymtl.ca

Aboolian R, Berman O, Krass D (2007) Competitive facility location and design problem. European Journal of Operational Research 182(1):40–62

Anderson E, Chen B, Shao L (2017) Supplier Competition with Option Contracts for Discrete Blocks of Capacity. **Operations Research** 65(4):952–967

Anshelevich E, Dasgupta A, Kleinberg J, Tardos E, Wexler T, Roughgarden T (2008) The Price of Stability for Network Design with Fair Cost Allocation. **SIAM Journal on Computing** 38(4):1602–1623

Anshelevich E, Dasgupta A, Tardos E, Wexler T (2003) Near-optimal network design with selfish agents. Proceedings of the thirty-fifth ACM symposium on Theory of computing - STOC '03, 511

Bikhchandani S, Mamer JW (1997) Competitive Equilibrium in an Exchange Economy with Indivisibilities. Journal of Economic Theory 74(2):385–413

Carvalho M, Lodi A, Pedroso J (2022) Computing equilibria for integer programming games. European Journal of Operational Research

Carvalho M, Lodi A, Pedroso JP, Viana A (2017) Nash equilibria in the two-player kidney exchange game. Mathematical Programming 161(1-2):389–417

Chen HL, Roughgarden T (2006) Network design with weighted players. Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms and architectures - SPAA '06, 29

Cronert T, Minner S (2020) Equilibrium identification and selection in integer programming games. SSRN preprint

71

David Fuller J, C, elebi E (2017) Alternative models for markets with nonconvexities. European Journal of Operational Research 261(2):436–449,

Facchinei F, Pang JS, eds. (2004) Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research and Financial Engineering

Federgruen A, Hu M (2015) Multi-Product Price and Assortment Competition. Operations Research 63(3):572–584

Gabriel SA, Siddiqui SA, Conejo AJ, Ruiz C (2013) Solving Discretely-Constrained Nash–Cournot Games with an Application to Power Markets. **Networks and Spatial Economics** 13(3):307–326,

Koeppe M, Ryan CT, Queyranne M (2011) Rational Generating Functions and Integer Programming Games. **Operations Research** 59(6):1445–1460

Roughgarden T, Tardos E (2004) Bounding the inefficiency of equilibria in nonatomic congestion games. Games and Economic Behavior 47(2):389–403

Schwarze S, Stein O (2022) A branch-and-prune algorithm for discrete Nash equilibrium problems. **Optimization Online Preprint** *ID 2022-03-8836:27,*

"Princeton faculty played a major role in the development of the theory of convex optimization (both as it relates to individuals and groups). Indeed, H. Kuhn and A.W. Tucker (in the 1950s) and R.T. Rockafellar (in the 1960s) played an important role in the development of much of convex analysis. In addition, R. Gomorry laid the foundations of integer programming in the 1950s, and J. Nash, J. von Neumann, and O. Morgenstern (in the 1930s, 40s and 50s) did seminal work in the area of multi-agent, **non-cooperative optimization (i.e., game theory)."**

How do we compute an NE, if any? And how do we select one when multiple equilibria exist?

Lemke-Howson Generalizations

Lemke and Howson, 1964; Rosenmüller, 1971; Wilson, 1971; Avis et al., 2010; Audet et al., 2006.

Homotopybased Scarf, 1967.

Equilibrium Programming

Facchinei and Pang, 2003; Sagratella, 2016; Pang and Scutari, 2011.

Support Enumeration

Sandholm et al., 2005; Porter et al., 2008. MIP

Sandholm et al., 2005; Cronert and Minner, 2021; Carvalho et al., 2022.

Computing one is often difficult, **selecting** one is even more challenging.

A Quick Comparison

Equilibrium Programming

✓ Often Xⁱ is continuous
✓ Algos: Complementarity or V.I.
✓ Global convergence?
✓ Non-convexities?
✓ Efficient in well-behaved cases

Normal/Extensive-form games

 No complex operational constraints
Explicit (and *burdensome*) representation of action sets
Popular in Game Theory literature

Their items **interact**!

 $6x_1^1 + x_2^1 - 4x_1^1x_1^2 + 3x_2^1x_2^2$ \max_{x^1} $3x_1^1 + 2x_2^1 \le 4$ s.t. $x^1 \in \{0,1\}^2$

How good is a NE? Can we select one?

$4x_1^2 + 2x_2^2 - x_1^2 x_1^1 - x_2^2 x_2^1$ \max_{x^2} s.t. $3x_1^2 + 2x_2^2 \le 4$ $x^2 \in \{0,1\}^2$

77

The "central" authority

 $6x_1^1 + x_2^1 - 4x_1^1x_1^2 + 6x_2^1x_2^2$ \max_{x^1} s.t. $3x_1^1 + 2x_2^1 \le 4$ $x^1 \in \{0,1\}^2$

$$\max_{x^2} \quad 4x_1^2 + 2x_2^2 - x_1^2 x_1^1 - x_2^2 x_2^1$$

s.t.
$$3x_1^2 + 2x_2^2 \le 4$$
$$x^2 \in \{0,1\}^2$$

 $(\bar{x}_1^1, \bar{x}_2^1) = (1,0)$ and $(\bar{x}_1^2, \bar{x}_2^2) = (1,0)$ with W = 2 + 3 = 5

 $(\bar{x}_1^1, \bar{x}_2^1) = (1,0)$ and $(\bar{x}_1^2, \bar{x}_2^2) = (0,1)$ W = 6 + 2 = 8

Optimal Social Welfare PoS "Best" NE

Optimal Social Welfare PoA "Worst" NE

The Closure

Equilibrium Closure

The equilibrium closure of $\operatorname{conv}(\mathcal{K})$ given by the set of equilibrium inequalities from before is given by:

 $P^e := \left\{ \left(x, z \right) \in \right.$

where $\mathcal{BR}(i, \tilde{x}^{-i})$ are the best-responses of *i* given \tilde{x}^{-i} . Then:

• P^e is a rational polyhedron, and

• $int(P^e)$ contains no points $(\bar{x}, \bar{z}) : \bar{x} \in \mathbb{Z}^{mn}$, and

• $P^e = \mathcal{E}$.

THEOREM

$$\in \operatorname{conv}(\mathcal{K}) \left| \begin{array}{l} u^{i}(\tilde{x}^{i}, x^{-i}) \leq u^{i}(x^{i}, x^{-i}) \\ \forall \tilde{x} : \tilde{x}^{i} \in \mathcal{BR}(i, \tilde{x}^{-i}), \ i = 1, \dots, n \end{array} \right|$$

Equilibrium Separation Oracle

OUTPUT: yes or no and Φ

For every player i = 1, 2, ..., n $\hat{x}^i \leftarrow \max_{x^i} \{ u^i(x^i, \bar{x}^{-i}) : A^i x^i \le b^i, x^i \in \mathbb{Z}^m \}$ If $u^{i}(\hat{x}^{i}, \bar{x}^{-i}) > u^{i}(\bar{x}^{i}, \bar{x}^{-i})$: Add $u^i(\hat{x}^i, x^{-i}) \leq u^i(x^i, x^{-i})$ to Φ

If Φ is empty: return yes Else: return no and Φ

INPUT: A profile (\bar{x}, \bar{z}) and an IPG Instance

MNEs and Approximate Equilibria

Other Equilibria

Equilibrium Inequality

least an MNE

Adding a small quantity γ to any equilibrium inequality \Rightarrow γ -Pure Nash equilibrium

An inequality is an equilibrium inequality if it is valid for ${\cal E}$

This includes, by definition, any pure strategy appearing in at

 $u^{i}(\tilde{x}^{i}, x^{-i}) - \gamma \leq u^{i}(x^{i}, x^{-i})$

(n, m, t)	EQIne	Time (s)	PoS	#TL	(r	n, m, t)	#EQIne	Time (s)	PoS	#TL
(2, 25, A)	14.67	0.06	1.04	0/3	(3	3, 25, A)	31.00	0.21	1.01	0/3
(2, 25, B)	17.33	0.12	1.02	0/3	(3	3, 25, B)	44.00	0.33	1.02	0/3
(2, 25, C)	29.33	0.39	1.06	0/3	(3	3, 25, C)	91.00	29.78	1.26	0/3
(2, 50, A)	20.00	0.21	1.02	0/3	(3	3, 50, A)	95.00	18.39	1.03	0/3
(2, 50, B)	26.67	0.51	1.01	0/3	(3	3, 50, B)	206.00	626.45	1.01	1/3
(2, 50, C)	72.67	6.34	1.08	0/3	(3	3, 50, C)	148.00	382.24	-	0/3
(2, 75, A)	38.00	0.60	1.00	0/3	(3	3, 75, A)	64.00	4.65	1.02	0/3
(2, 75, B)	100.67	8.35	1.02	0/3	(3	3, 75, B)	278.00	982.97	1.01	1/3
(2, 75, C)	112.67	47.75	1.08	0/3	(3	3, 75, C)	173.00	658.77	-	1/3
(2, 100, A)	25.33	0.76	1.01	0/3	(3	3, 100, A)	261.00	1200.65	1.00	2/3
(2, 100, B)	205.33	220.42	1.01	0/3	(3	3, 100, B)	479.00	1800.00	_	3/3
(2, 100, C)	697.33	1205.29	1.05	2/3	(3	3, 100, C)	184.00	1200.31	_	2/3

(n, m, t)	EQIne	Time (s)	PoS	#TL	(n, m, t)	#EQIne	Time (s)	PoS #TL
(2, 25, A)	14.67	0.06	1.04	0/3	(3, 25, A)	31.00	0.21	1.01 0/3
(2, 25, B)	17.33	0.12	1.02	0/3	(3, 25, B)	44.00	0.33	1.02 0/3
(2, 25, C)	29.33	0.39	1.06	0/3	(3, 25, C)	91.00	29.78	1.26 0/3
(2, 50, A)	20.00	0.21	1.02	0/3	(3, 50, A)	95.00	18.39	1.03 0/3
(2, 50, B)	26.67	0.51	1.01	0/3	(3, 50, B)	206.00	626.45	1.01 1/3
(2, 50, C)	72.67	6.34	1.08	0/3	(3, 50, C)	148.00	382.24	- 0/3
(2, 75, A)	38.00	0.60	1.00	0/3	(3, 75, A)	64.00	4.65	1.02 0/3
(2, 75, B)	100.67	8.35	1.02	0/3	(3, 75, B)	278.00	982.97	1.01 1/3
(2, 75, C)	112.67	47.75	1.08	0/3	(3, 75, C)	173.00	658.77	- 1/3
(2, 100, A)	25.33	0.76	1.01	0/3	(3, 100, A)	261.00	1200.65	1.00 2/3
(2, 100, B)	205.33	220.42	1.01	0/3	(3, 100, B)	479.00	1800.00	- 3/3
(2, 100, C)	697.33	1205.29	1.05	2/3	(3, 100, C)	184.00	1200.31	- 2/3

(n, m, t)	EQIne	Time (s)	PoS	#TL	(n, m, t)	#EQIne	Time (s)	PoS #TL
(2, 25, A)	14.67	0.06	1.04	0/3	(3, 25, A)	31.00	0.21	1.01 0/3
(2, 25, B)	17.33	0.12	1.02	0/3	(3, 25, B)	44.00	0.33	1.02 0/3
(2, 25, C)	29.33	0.39	1.06	0/3	(3, 25, C)	91.00	29.78	1.26 0/3
(2, 50, A)	20.00	0.21	1.02	0/3	(3, 50, A)	95.00	18.39	1.03 0/3
(2, 50, B)	26.67	0.51	1.01	0/3	(3, 50, B)	206.00	626.45	1.01 1/3
(2, 50, C)	72.67	6.34	1.08	0/3	(3, 50, C)	148.00	382.24	- 0/3
(2, 75, A)	38.00	0.60	1.00	0/3	(3, 75, A)	64.00	4.65	1.02 0/3
(2, 75, B)	100.67	8.35	1.02	0/3	(3, 75, B)	278.00	982.97	1.01 1/3
(2, 75, C)	112.67	47.75	1.08	0/3	(3, 75, C)	173.00	658.77	- 1/3
(2, 100, A)	25.33	0.76	1.01	0/3	(3, 100, A)	261.00	1200.65	1.00 2/3
(2, 100, B)	205.33	220.42	1.01	0/3	(3, 100, B)	479.00	1800.00	- 3/3
(2, 100, C)	697.33	1205.29	1.05	2/3	(3, 100, C)	184.00	1200.31	- 2/3

(n, m, t)	EQIne	Time (s)	PoS	#TL	(n, m, t)	#EQIne	Time (s)	PoS	#TL
(2, 25, A)	14.67	0.06	1.04	0/3	(3, 25, A)	31.00	0.21	1.01	0/3
(2, 25, B)	17.33	0.12	1.02	0/3	(3, 25, B)	44.00	0.33	1.02	0/3
(2, 25, C)	29.33	0.39	1.06	0/3	(3, 25, C)	91.00	29.78	1.26	0/3
(2, 50, A)	20.00	0.21	1.02	0/3	(3, 50, A)	95.00	18.39	1.03	0/3
(2, 50, B)	26.67	0.51	1.01	0/3	(3, 50, B)	206.00	626.45	1.01	1/3
(2, 50, C)	72.67	6.34	1.08	0/3	(3, 50, C)	148.00	382.24	-	0/3
(2, 75, A)	38.00	0.60	1.00	0/3	(3, 75, A)	64.00	4.65	1.02	0/3
(2, 75, B)	100.67	8.35	1.02	0/3	(3, 75, B)	278.00	982.97	1.01	1/3
(2, 75, C)	112.67	47.75	1.08	0/3	(3, 75, C)	173.00	658.77	-	1/3
(2, 100, A)	25.33	0.76	1.01	0/3	(3, 100, A)	261.00	1200.65	1.00	2/3
(2, 100, B)	205.33	220.42	1.01	0/3	(3, 100, B)	479.00	1800.00	-	3/3
(2, 100, C)	697.33	1205.29	1.05	2/3	(3, 100, C)	184.00	1200.31	-	2/3

Network Formation Game

(V , E)	EQIne	T (s)	T-1st	PoS	TL
(50, 99)	6.00	0.04	0.04	1.12	0/3
(100, 206)	2.33	0.05	0.04	1.00	0/3
(150, 308)	6.00	0.64	0.25	1.01	0/3
(200, 416)	11.67	3.28	1.11	1.06	0/3
(250, 517)	64.67	63.50	16.07	1.02	0/3

(|V|, |E|) **T (s)** EQIne PoS T-1st (300, 626) 2.64 1.04 0/3 21.00 12.11 1.01 0/3 (350, 730) 7.42 19.00 13.92 (400, 822) 694.95 228.69 248.67 1.08 1/3 (450, 934) 394.67 2.61 1199.98 (500, 1060) 35.67 87.07 7.25 1.00 0/3

TL

Network Formation Game

(V , E)	EQIne	T (s)	T-1st	PoS	TL
(50, 99)	6.00	0.04	0.04	1.12	0/3
(100, 206)	2.33	0.05	0.04	1.00	0/3
(150, 308)	6.00	0.64	0.25	1.01	0/3
(200, 416)	11.67	3.28	1.11	1.06	0/3
(250, 517)	64.67	63.50	16.07	1.02	0/3

(|V|, |E|) **T (s)** EQIne T-1st PoS (300, 626) 2.64 1.04 0/3 21.00 12.11 1.01 0/3 (350, 730) 7.42 19.00 13.92 (400, 822) 228.69 694.95 248.67 1.08 1/3 (450, 934) 394.67 2.61 1199.98 (500, 1060) 35.67 87.07 7.25 1.00 0/3

TL

Network Formation Game

(V , E)	EQIne	T (s)	T-1st	PoS	TL
(50, 99)	6.00	0.04	0.04	1.12	0/3
(100, 206)	2.33	0.05	0.04	1.00	0/3
(150, 308)	6.00	0.64	0.25	1.01	0/3
(200, 416)	11.67	3.28	1.11	1.06	0/3
(250, 517)	64.67	63.50	16.07	1.02	0/3

(|V|, |E|) **T (s)** EQIne T-1st PoS (300, 626) 2.64 1.04 0/3 21.00 12.11 (350, 730) 1.01 0/3 19.00 13.92 7.42 (400, 822) 228.69 1.08 248.67 694.95 (450, 934) 1.11 394.67 1199.98 2.61 (500, 1060) 35.67 87.07 7.25 1.00 0/3

TL

 $\max_{x^{1}} \quad 6x_{1}^{1} + x_{2}^{1} - 4x_{1}^{1}x_{1}^{2} + 6x_{2}^{1}x_{2}^{2}$ s.t. $3x_{1}^{1} + 2x_{2}^{1} \le 4$ $x^{1} \in \{0,1\}^{2}$

 $\max_{x^2} \quad 4x_1^2 + 2x_2^2 - x_1^2 x_1^1 - x_2^2 x_2^1$ s.t. $3x_1^2 + 2x_2^2 \le 4$ $x^2 \in \{0,1\}^2$

 $\max_{x^{1}} \quad 6x_{1}^{1} + x_{2}^{1} - 4x_{1}^{1}x_{1}^{2} + 6x_{2}^{1}x_{2}^{2}$ s.t. $3x_{1}^{1} + 2x_{2}^{1} \le 4$ $x^{1} \in \{0,1\}^{2}$

(0,0)

- (0,0) 00
- x^{1} (1,0) 60
 - (0,1) 10

 $4x_1^2 + 2x_2^2 - x_1^2x_1^1 - x_2^2x_2^1$ \max_{x^2} $3x_1^2 + 2x_2^2 \le 4$ s.t. $x^2 \in \{0,1\}^2$ x^2

(1,0) (0,1)

12

04	02
----	----

00	
23	62

71

 $\max_{x^2} \quad 4x_1^2 + 2x_2^2 - x_1^2 x_1^1 - x_2^2 x_2^1$ s.t. $3x_1^2 + 2x_2^2 \le 4$ $x^2 \in \{0,1\}^2$

 $\boldsymbol{\chi}$

		x^2	
	(0,0)	(1,0)	(0,1)
(0,0)	00	04	02
(1,0)	60	23	<mark>6</mark> 2
(0,1)	10	12	71

 $\max_{x^{1}} \quad 6x_{1}^{1} + x_{2}^{1} - 4x_{1}^{1}x_{1}^{2} + 6x_{2}^{1}x_{2}^{2}$ s.t. $3x_{1}^{1} + 2x_{2}^{1} \le 4$ $x^{1} \in \{0,1\}^{2}$

			x^2	
		(0,0)	(1,0)	(0,1)
	(0,0)	00	04	02
1	(1,0)	<mark>6</mark> 0	23	<mark>6</mark> 2
	(0,1)	10	12	71

$$\max_{x^{1}} \quad 6x_{1}^{1} + x_{2}^{1} - 4x_{1}^{1}x_{1}^{2} + 6x_{2}^{1}x_{2}^{2}$$

s.t.
$$3x_{1}^{1} + 2x_{2}^{1} \le 4$$
$$x^{1} \in \{0,1\}^{2}$$

 $\max_{x^2} \quad 4x_1^2 + 2x_2^2 - x_1^2 x_1^1 - x_2^2 x_2^1$ s.t. $3x_1^2 + 2x_2^2 \le 4$ $x^2 \in \{0,1\}^2$

