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A Brief Overview of This Talk

are Mathematical Programming Games

do we need them, some applications, and core research questions

do we solve them in practice







What are MPGs?

AN MPG is a (static) game among n players where each rational player
1 = 1,2,...,n solves the optimization problem

max{f'(x, x7) : x' € L'}

X

The payoff function for 1
n
fala: [ - R
j=1

s parametrized in x™°
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The payoff function for 1
n
fiodx T [] 2 - R
=1
i

S parametrized in x

The choices of I's opponents
affect its payoff

xte )

The set of actions for i

t%‘l

However, they do not affect
I's actions



max{f'(x,x™) : x' € L")

X

Action Representation

Modeling Requirements

Language and Objectives

—ach player’s actions are represented with an
arbitrary set 2"

In many applications, X’ may include a complex
set of operational requirements

MPGs provide a unified framework to represent
games from pboth AGT and Optimization
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Equilibria as Solutions

A profile x = (3, ..., X" — with¥ € " for any i —
IS a Pure Nash Equilibrium (PNE) /1

fi()_Ci, )_C_i) Zfi(jei, )_C_i) V)%l = f[i

Does at least one exist? How hard is it to compute one?

How do we compute an NE, if any? And how do we select
one when multiple equilibria exist?

How efficient is this NE?
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A Few Examples

Integer Programming Games, or games among
parametrized Integer Programs

+ : : : »
:‘1 Bilevel Programming and simultaneous games, specifically
P for energy
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1 1
6)61 + x,

3x11 + 2x21 <4

x! e {0,1}?
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Imax
5!

S.t.

Their products interact!

6x1 + x2 4)c1 xl + 6x2x2 nlex
3x] +2x) < 4 s.t.
x! e {0,1}7

Knapsack Games (Carvalho et al., 2022)

y)
4)61 + 2x2

2 2
2x7 + 3x5; <
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Carvalho, Dragotto, Lodi, Feijoo, Sankaranarayanan (2020)



SolarCorp Inc.

Simultaneous
Game

Hydro Inc.
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Canada taxes and regulates the production

Simultaneous
Game

SolarCorp Inc. Hydro Inc.
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SolarCorp Inc.

Seqguential
“Stackelberg” Game

Simultaneous
Game

Hydro Inc.

19



Canada U.S.

Simultaneous

-
.......
......
el
......
.......
........

Game ——

L < P .
¢ S P 3
X 4

This Is a simultaneous game among bilevel (1.e., sequential)
orograms (NASP)
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Canada

max{(c)'x'+ x7) ' Cix' : x' € F')

xl

“ach ' includes the optimality
conditions of each “follower” (i.e.,

oroducer)
[ A< . .
Fr=4q 2'=Mza"+¢ ﬂ (1z; = 0y U {x; = 0}).
' >0,2">0 jEeCi
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Istence

yorithms

Iciency

sights

Can MPGs model real-world problems?

When does at least an equilibrium exist?

How do we compute and select equilibria?

How do different equilibria (solutions) in MPGs differ?

Do equilibria promote socially-beneficial outcomes and
provide insights?
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How?

A AY4 aVYalVaa » ay¥Ya aalaa a¥a aa
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do we use and solve them In practice
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How?

do we use and solve them In practice

Computing Nash eqguilibria in some
NON-CONVEX games

24






Non-Convexities

How to compute equilibria in MPGs where players solve non-
convex optimization problems?

Specifically, when Z*is non convex?

Integer Variables: indivisible quantities and logical conditions
Bilevel Constraints: hierarchical decision-making

Non-linear non-convex constraints: physical phenomena

260



The Problem

RBGs We consider Reciprocally-Bilinear Games (RBGS), namely MPGs
where each player solves

max {f{(x’, x ) = (¢)Tx' + (xHTCx' - xi € T

X

e There is common knowledge of rationality, thus each player is
rational and there is complete information,

e The game is polyhedrally-representable if cl conv(2?) is a
polyhedron for any 1 + blackbox to optimize a line

over X
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Contributions

lgorithms

ractical

Cutting plane algorithm: computes (Mixed) Nash

equilibria (MN

=

The first algorithm to work with iteratively refined
outer approximations of player’s feasible sets
(convex hulls) + general non-convex games
(polyhedrally representable)

Integrates integer programming machinery

Extensive testing on Knapsack Games and games

among bilevel

leaders (NASPS)
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How do we compute an NE, if any? And how do we select
one when multiple equilibria exist?
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max
51

S.t.

Best-responses

6x11 + le —4)611)612 + 6x21x22

3x11 -+ 2x21 <4
x! e {0,1}?

max
2

S.t.

2 2 2.1

3x12 + 2x22 <4
x> € {0,1}?

(0,0) (1,0) 2

2..1

— Ay Xy
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max
51

S.t.

6x11 + le —4)611)612 + 6x21x22

3x; +2x, < 4
x! e {0,1}?

(0,0)
(1,0)
(2)

0

6

]

y) y) 2.1 2.1
nilex 4)61 + 2x2 —X{X; — XX,

st.  2x7+3x5 <4
2 x? € {0,1}?
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) ) 2.1 2.1
mezlx 4x1 + 2x2 —X{X; — XX,

x 2
st.  2x7+3x5 <4
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Caveat: this requires an explicit enumeration of the
olayers’ strategies...
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Caveat: this requires an explicit enumeration of the
olayers’ strategies...

What If we formulate a Complementarity Problem starting from
the /linear relaxations or each player’s problem?

36



z=Mo+q,06'z=0

c>0,z2>0
Provides all the MNEs for the game?
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z=Mo+q,06'z=0

620,220
Provides all the MNEs for the game?

fA', b' describe cl conv(Z"), i.e., convex game
e Prohibitive In practice...
f A', b' do not describe cl conv(Z")

e Some MNEs may be excluded
e Some spurious MNEs may be introduced
e May not give bounds, as in Optimization




0Lolz=WMo+gq,) >0

Provides all the MNEs for the game?

A% b deseribe cl conv()

THEOREM (the shortened version)
Given an RBG G and a copy of it G where the feasible region
of player i is ¢l conv (XY (instead of L), then:

e For any PNE o of G. there exists an MNE é
of G so that each player get the same

payoffin G and G
e /FG has no PNEs. then G has no MNEs.
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f A%, b* describe cl conv(Z™)

40



f A%, b* describe cl conv(Z™)
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The Idea



The Idea

Compute an MNE for an

o

3G G by computing (

series of “easier” convex games G

DYN

s for a




The Idea

Compute an MNE for an

-

3G G by computing (

series of “easier” convex games G

DYN

If A', b' do not describe cl conv(Z?)

e Some MNEs may be excluded
e Some spurious MNEs may be introduced
e May not give bounds, as in Optimization

=S for a




The Idea

Compute an MNE for an RBG G by computing (P)NEs for a

series of “easier” convex games G

IfAi, b' do not describe cl conv(ﬁl"i)

e Some MNEs may be excluded
e Some spurious MNEs may be introduced
e May not give bounds, as in Optimization

At each iteration, either we find an MNE for G or we refine the
approximation in G



Approximation

Given the polyhedrally-representable RBG G, we construct
polyhedrs (; where each i solves instead

max{f'(x’,x™) = (c)"x'+ ) TCix' : x' € X7}

L= {AX' < b ,x' >0}, " C clconv(XH) C °

Namely, 2! (polyhedra cl conv(2)
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Finding MNEs

The LCP

max {f{(x,x ™) = (¢)Tx + ) TCx' : x € T)

~J

X' =A% < b, x' >0}, 2" C clconv(XT) C I

ol Cly—1 AIT

71 _Al - ~ e o~ AT~
: b P Ay 0 7=Mé+qG,6'2=0
q = | ~ -

Cn Cx— " AnT O Z ()9 ¢ Z O

I;n _A'n 0
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s 6 an MNE for G ?




Ask the Oracle




Oracle

Given a point X (=6 and X (= "), the Enhanced
Separation Oracle (ESO) determines that either

X € cl conv (') and :
“extended proof”

The extende 1S the suppo
compination of elements in ext(c

of rays in rec(cl conv(Z))

X & cl conv ()

+ a cut for cl conv(X') and x

T of X, I.e. convex

conv(Z)) and conic comb.

INn practice, the oracle builds a 7 -polyhedral inner-

approximation of cl conv (X))



Enhanced Separation Oracle

INPUT: A point X (=6 and X (= 2" (a tolerance &)
OUTPUT: or
V=R = @ or storage

Repeat:
W <« conv(V) + cone(R) 3 /nner approximation of ¢/l conv(I)
If Xe# : return and proof of inclusion
If x& W

7'x < @, separates ¥ and %
€ «— max {7'x:x € L} with v maximizer

If @=00: R<~ RU{r} with r extreme ray

Else:

7'y < 1'% return

V< Vul{v}
51



Enhanced Separation Oracle

INPUT: A point X (=6 and X (= 2" (a tolerance &)
OUTPUT: or
V=R = @ or storage

Repeat:
W <« conv(V) + cone(R)
If X€ W : return and This is an LP
If x& W

7'x < @, separates ¥ and %
€ «— max {7'x:x € L} with v maximizer

If @=00: R<~ RU{r} with r extreme ray

Else:

7'y < 1'% return

V< Vul{v}
52



Enhanced Separation Oracle

Mmax X'Tﬂ' — 71'0

T, 78

v, —my <0 Vv eV

meO Vr, € R
e (u+v)y=1
t4+u—v=_0

u,v >0

Objective is O

03



Enhanced Separation Oracle

INPUT: A point X (=6 and X (= 2" (a tolerance &)
OUTPUT: or
V=R = @ or storage

Repeat:
W <« conv(V) + cone(R)
If Xe# : return and proof of inclusion
If x& W

7'x < @, separates ¥ and %
€ «— max {7'x:x € L} with v maximizer

If @=00: R<~ RU{r} with r extreme ray

Else:

7'y < 1'% return

V< Vul{v}
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Enhanced Separation Oracle

INPUT: A point X (=6 and X (= 2" (a tolerance &)
OUTPUT: or
V=R = @ or storage

Repeat:
W <« conv(V) + cone(R)
If X€ W : return and
If x& W

7'x < @, separates ¥ and %
€ «— max {7'x:x € L} with v maximizer

If @=00: R<~ RU{r} with r extreme ray

Else:

7'y < 1'% return

V< Vul{v}
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Enhanced Separation Oracle

INPUT: A point X (=6 and X (= 2" (a tolerance &)
OUTPUT: or
V=R = @ or storage

Repeat:
W <« conv(V) + cone(R)
If X€ W : return and
If x& W

7'x < @, separates ¥ and %
€ «— max {7'x:x € L} with v maximizer

If @=00: R<~ RU{r} with r extreme ray

Else:

7'y < 1'% return

V< Vuli{v}
56



The Cut-and-Play



The Cut-And-Play

(G and tolerance ¢

Outer approximation Xf)

for any player |

Find PNE & in G via LCP

l

Branch-or-Cut

candidate?

—_—

ESOW(&, L. e, ¢ + (CHT67Y)

|

Found MNE for G

NO MNE

o3



—or any 1, any inequality valid for cl conv(ﬁl"i) works for the
algorithm (at any step).

—urther, a MIP solver can handle the LCP



Experiments



Knapsack Game (KPG)

As for Wizard and Fairy, eac
WIith some inte

NS

aC

ayer solves a binary Knapsack problem

tion terms in the objective

max{z x’+ Z ZC,EJ K le’x’<blx E{Ol}m}
J=

k=1,k#i j=1

W.l.0.g., each player controls m items

ol
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Knapsack Game
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Knapsack Game
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Knapsack Game
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Knapsack Game
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NASPS



Canada U.S.

Simultaneous

-
.......
......
el
......
.......
........

Game ——

L < P .
¢ S P .
X 4 X 4

This Is a simultaneous game among bilevel (1.e., sequential)
orograms (NASP)
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Are leaders (countries) further reducing their emission

If they optimize the me from a carbon-tax?

Does trade among countries under a carbon-tax reduce

Nnissions?
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Are leaders (countries) further reducing their emission

If they optimize the ne from a carbon-tax?

't depends on what source energy producers use (i.e., coal vs solar).

INn general, no.

Does trade among countries under a carbon-tax reduce

nissions?
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Are leaders (countries) further reducing their emission

If they optimize the me from a carbon-tax?

't depends on what source energy producers use (i.e., coal vs solar).
INn general, no.

Does trade among countries under a carbon-tax reduce emissions?

can fu

Since trade is about money, the intuitive answer is no.
However, we found that countries with large guantities of clean energy

fil the need of countries with fossil fuel, ‘educing the overall emissions.

/9






Some Remarks

In MPGs, the plausibility of the Nash equilibrium can
only stem from the availability of efficient tools to
compute it

/7






If non-convexities are not necessarily integer:

max{f' (x,x™) = (c)'x'+ (x)'C'x" : x' € I}

X

So-called Reciprocally-Bilinear Games

Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, Sriram Sankaranarayanan, The Cut and
Play Algorithm. Computing Nash Equilibria via Outer Approximations, arXiv:2111.05726



An MPG library

VA=

( ’ https:/github.com/ds4dm/ZERO

Gabriele Dragotto, Sriram Sankaranarayanan, Margarida Carvalho, Andrea Lodl, ZERO. Playing
Mathematical Programming Games, arXiv:2111.07932
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Models::IPG:IPG IPG_Model(&GurobiEnyv, IPG_Instance);

// Select the equilibrium to compute a Nash Equilibrium
IPG_Model.setAlgorithm(Data::IPG::Algorithms::CutAndPlay);
// Extra parameters

IPG_Model.setDeviationTolerance(3e-4);

IPG Model.setNumThreads(8);
IPG_Model.setLCPAIlIgorithm(Data::LCP::Algorithms::PATH);

// Lock the model
IPG_Model.finalize();

// Run!
IPG Model.findNashEqgQ);



Directions

othodology

ractice

Developments of efficient algorithms and
theoretical frameworks to handle complex non-
convex problems

Rational behavior through inequalities and
Optimization, new solutions concepts

MPGs and applications

Companies, governments, and in general,
organizations are likely to solve optimization
oroblems. Trade-off selfishness and social good

32



Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, Sriram Sankaranarayanan, The Cut and
Play Algorithm. Computing Nash Equilibria via Outer Approximations, arXiv:2111.05726

Margarida Carvalho, Gabriele Dragotto, Felipe Feljoo, Andrea Lodi, Sriram Sankaranarayanan,
When Nash Meets Stackelberg, arXiv:1910.06452



Carvalho M, Lodi A, Pedroso J (2022) Computing equilibria for integer programming games. European Journal of
Operational Research

Carvalho M, Lodi A, Pedroso JP Viana A (201/7) Nash equilibria in the two-player kidney exchange game.
Mathematical Programming /67(7-2).389-41/

David Fuller J, C elebi E (201/) Alternative models for markets with nonconvexities. European Journal of
Operational Research 267(2):4356-449,

Facchinel F, Pang JS, eds. (2004) Finite-Dimensional VVariational Inequalities and Complementarity Problems.
Springer Series in Operations Research and Financial Engineering

Ferris, M.C. and Munson, T.S., 1999. Interfaces to PATH 3.0. Design, implementation and usage. Computational
Optimization and Applications, /2(1), pp.20/-22/.

Gabriel SA, Siddiqui SA, Conejo AJ, Ruiz C (2013) Solving Discretely-Constrained Nash-Cournot Games with an
Application to Power Markets. Networks and Spatial Economics /5(35).50/-326,

Koeppe M, Ryan CT, Queyranne M (207]1) Rational Generating Functions and Integer Programming Games.
Operations Research 59(6).1445-1460
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Equilibrium Programming

Often L is continuous

Comparing MPGs

Normal/Extensive-form games

NoO complex operational constraints

Algos: Complementarity or V.I. Explicit (and burdensome)

Global convergence?
Non-convexities?

representation of action sets
v Popular in Game Theory literature

Vv Efficient in well-behaved cases

36



When Nash Meets Stackelberg

Joint work with Margarida Carvalho, Felipe Feijoo, Andrea Lodi and
Sriram Sankaranarayanan




Contributions

omplexity It is Zg-hard to determine a MNE/PNE, in general

A full enumeration scheme, and an inner
approximation scheme

lgorithms

1sights Energy market tests, with Chilean-Argentinean
case study
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Magicville

Reformulate each Stackelberg
game as a single-leve
Optimization problem

39



Magicville Witchtown

Simultaneous
Game

Then, the game i1s an RBG, if objectives are
compatible
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Magicville Witchtown

Among the reformulated bilevel programs, namely
the real players
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Magicville

max{(c)'x'+ x7) ' Cix' : x' € F')
X! —

The reformulated feasible region
includes the KKT for the
followers’ problems

[ A<y . .
Fr=4q 2'=Mza"+¢ ﬂ (1z; = 0y U {x; = 0}).
' >0,2">0 jEeCi
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Magicville

max{(c)'x'+ x7) ' Cix' : x' € F')
xl

Fully enumerate cl conv(F")

Inner approximate cl conv(%") (dual to CnP)
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Magicville

Time (S) #TL

y . Fully enumerate cl conv(F?) 120.2 9/149

Inner approximate cl c:onv(?fri) 3.73 0/149




The Problem(s)

Stackelberg Games

(Stackelberg, 1934;
Candler and Norto, 1977)

A Stackelberg game is a sequential game with perfect
where the players act in rounds:

e \We consider games where there is an unique first-round player
called the leader, who solves an optimization problem

e The second-round players are the followers solving
optimization problems J on the leader’s choices

A solution Is a vector of strategies that are optimal for both the
leader and its followers

In the general case, determining a solution is / %-hard
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Could we reformulate the Stackelberg game
as a single optimization problem?



Not always, yet...



The Problem(s)

A Stackelberg game can be reformulated intc ingle-level
oblem If:

Stackelberg Games

(Basu et al., 2020)

1. The leader’s objective function is linear in its variables and the

ones of its followers
2. The leader’s constraints are linear constraints
3. The followers solve convex guadratic optimization problems

Specifically, the feasible region of this program Is a union of
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Complexity



Complexity

THEOREM
Given a NASP with 2 leaders with 1 follower each, so that each
follower solves a linear program and the leaders all have linear

objectives in their variables:

1. Itis 2129 — hard to determine if the game an E/PNE

2. It all reformulated problems have a bounded feasible region
F! xists an MNE
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Algorithmic Ideas



Full Enumeration

INPUT: A NASP N
OUTPUT: or

For every player i=1,2,...,n

Compute cl conv(%') through Balas’

Solve an LCP with the convex hulls
If LCP has a solution: return

Else: return
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Inner approximation

Inner-approximate cl conv(2™)

[[OK:



Inner approximation

Compute an MNE starting with a single
oolyhedron
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Inner approximation

If there exists a NE, and also a
deviation, add it to the next
iteration
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Inner approximation

cl conv(2Y)
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Inner approximation
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Inner approximation

cl conv(2Y)
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Inner approximation

INPUT: A NASP N
OUTPUT: or

For every player i=1,2,...,n

Initialize %! with one polyhedron from the union

While True:

L]

Solve an LCP to determine an N.
If LCP has a solution:

If no deviation: return
Else deviation for i: add the polyhedron to Z.
If LCP has no solution:

I1f no more polyhedra: return

Else: add random polyhedra to %.
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Clean Energy Experiments



Energy Game

MNE

Algorithm
FE

InnerApp

a-

1
3
5
1
3
D
1
3
5

Z
S | ©

CO 0O OO0 0 O

Solved

140/149

145/149
145/149
145/149
149/149
145/149
143/149
147/149
143/149
145/149

122/149

[



Energy Game

,,.
Z
O

Algorithm
FE

Solved

'
00
ro

140/149

145/149
145/149
145/149
149/149
145/149
143/149
147/149
143/149
145/149

MNE InnerApp

1 0
3 0
5 0
1 0
3 0
0 0
1 0
3 0
5 0

122/149
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Energy Game

MNE

Algorithm
FE

InnerApp

ES

Seq
Seq
Seq
Rev.Seq
Rev.Seq

Rev.Seq
Random

Random
Random

Z
S | ©

SO O0OC 00 OO0 00O

Solved

140/149

145/149
145/149
145/149
149/149
145/149
143/149
147/149
143/149
145/149

122/149
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Energy Game

Z
O

Algorithm Solved

FE

00
o

140/149

145/149
145/149
145/149
149/149
145/149
143/149
147/149
143/149
145/149

MNE InnerApp

0
0
0
0
0
0
0
0
0

122/149
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Energy Game

Time (s)
Algorithm NO All

FE 1.12  1174.32

g
-

Solved
20/50

!
o | O
Z
@

9.64 672.24

Seq 3.88 616.25

Seq 2.83 733.97
Rev.Seq 9.66 262.74

InnerApp Rev.Seq 3.86 585.27
Rev.Seq 2.83 798.90

Random 9.65 497.06

Random 3.87 H588.03
Random 2.86 T11.77

32/50
34/50
30/50
47/50
34/50
29 /50
37/50
36 /50
11/50

MNE

CO QOO OO0 | N

- 1.12 1441.95 10/50
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Energy Game

z
:

Time (s)
Algorithm ES NO All

=]
O
2z
O

Solved
20/50

FE - 1.12  1174.32

-

Seq 9.64 672.24

Seq 3.88 616.25
Seq 2.83 733.97

Rev.Seq 9.66 262.74

InnerApp Rev.Seq 3.86 585.27
Rev.Seq 2.83 798.90

Random 9.65 497.06

Random 3.87 H588.03
Random 2.86 711.77

32/50
34/50
30/50
47/50
34/50
29/50
37/50
36 /50
141/50

MNE

—_N O S = =N ==
QOO0 OO0 0O O N

- - 1.12  1441.95 10/50
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NASPs

GT (s) # GT (s) # #NI #TL
NASH EQ NO EQ

6.22 49 69.76 1
4.94 49 23.96

747 46 29.37
9.45 46 11.81

-0
-0
03.79 41
02.98 35

b
Ot QP OO | © O OO

A

0
0
3
3
1
0
0
0

p—t
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