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A Brief Overview of This Talk

are Mathematical Programming Games

do we need them, some applications, and core research questions

do we solve them in practice

What

Why

How



What are MPGs? What

Why



An MPG is a (static) game among  players where each rational player 
 solves the optimization problem

n
i = 1,2,…, n

max
xi

{f i(xi, x−i) : xi ∈ 𝒳i}

The payoff function for 





is parametrized in 

i

f i(xi, x−i) :
n

∏
j=1

𝒳j → ℝ

x−i

The set of actions for 
i
𝒳i

What are MPGs?
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max
xi

{f i(xi, x−i) : xi ∈ 𝒳i}

The choices of ’s opponents  
affect its payof

i However, they do not affect 
’s actionsi

The payoff function for 





is parametrized in 

i

f i(xi, x−i) :
n

∏
j=1

𝒳j → ℝ

x−i

The set of actions for 
i
𝒳i
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Action Representation

max
xi

{f i(xi, x−i) : xi ∈ 𝒳i}

Modeling Requirements

Language and Objectives
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Each player’s actions are represented with an  
arbitrary set 𝒳i

In many applications,  may include a complex 
set of operational requirements

𝒳i

MPGs provide a unified framework to represent 
games from both AGT and Optimization



f i(x̄i, x̄−i) ≥ f i( ̂xi, x̄−i) ∀ ̂xi ∈ 𝒳i

A profile  — with  for any  — 
is a Pure Nash Equilibrium (PNE) if

x̄ = (x̄1, …, x̄n) x̄i ∈ 𝒳i i
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Equilibria as Solutions

Does at least one exist? How hard is it to compute one?

How do we compute an NE, if any? And how do we select 
one when multiple equilibria exist?

How efficient is this NE?
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A Few Examples

Integer Programming Games, or games among 
parametrized Integer Programs🧙 🧚
Bilevel Programming and simultaneous games, specifically 
for energy☀⚡



🧙 🧚 

Open 2 Convenience Stores
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🧙

max
x1

6x1
1 + x1

2

3x1
1 + 2x1

2 ≤ 4

x1 ∈ {0,1}2

s.t.



🧚

max
x2

4x2
1 + 2x2

2

2x2
1 + 3x2

2 ≤ 4

x2 ∈ {0,1}2

s.t.

Their products interact!

−4x1
1x2

1 + 6x1
2x2

2 −x2
1 x1

1 − x2
2 x1

2

🧙
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Knapsack Games (Carvalho et al., 2022)

max
x1

6x1
1 + x1

2

3x1
1 + 2x1

2 ≤ 4

x1 ∈ {0,1}2

s.t.



☀⚡

Energy

Carvalho, Dragotto, Lodi,  Feijoo, Sankaranarayanan (2020)



🌊☀

SolarCorp Inc. Hydro Inc.

Simultaneous 

Game
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🇨🇦
Canada taxes and regulates the production
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🌊☀

SolarCorp Inc. Hydro Inc.

Simultaneous 

Game



🇨🇦
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Sequential 
“Stackelberg” Game

🌊☀

SolarCorp Inc. Hydro Inc.

Simultaneous 

Game



🇨🇦

🌊☀

🇺🇸

🏭⚡

Canada U.S.

This is a simultaneous game among bilevel (i.e., sequential) 
programs (NASP)

20

Simultaneous 

Game



max
xi

{(ci)⊤xi + (x−i)⊤Cixi : xi ∈ ℱi}

Each  includes the optimality 
conditions of each “follower” (i.e., 

producer)

𝒳i

21

Canada

🇨🇦

🌊☀
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Modeling

Efficiency How do different equilibria (solutions) in MPGs differ?

Algorithms How do we compute and select equilibria?

Insights Do equilibria promote socially-beneficial outcomes and 
provide insights?

Can MPGs model real-world problems?

Existence When does at least an equilibrium exist? 
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How?

are Mathematical Programming Games

do we need them, some applications, and core research questions

do we use and solve them in practice

What

Why

How
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How?

do we use and solve them in practiceHow

Cut-And-Play

Computing Nash equilibria in some 
non-convex games



The Cut-and-Play Algorithm



How to compute equilibria in MPGs where players solve non-
convex optimization problems?
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Non-Convexities

Specifically, when  is non convex?𝒳i

Integer Variables: indivisible quantities and logical conditions


Bilevel Constraints: hierarchical decision-making


Non-linear non-convex constraints: physical phenomena



We consider Reciprocally-Bilinear Games (RBGs), namely MPGs  
where each player solves

max
xi

{f i(xi, x−i) = (ci)⊤xi + (x−i)⊤Cixi : xi ∈ 𝒳i}

• There is common knowledge of rationality, thus each player is 
rational and there is complete information,


• The game is polyhedrally-representable if  is a 
polyhedron for any  + blackbox to optimize a linear function 
over 

cl conv(𝒳i)
i

𝒳i

RBGs

The Problem
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Contributions

Cutting plane algorithm: computes (Mixed) Nash 
equilibria (MNEs)

Extensive testing on Knapsack Games and games 
among bilevel leaders (NASPs) 

The first algorithm to work with iteratively refined 
outer approximations of player’s feasible sets 
(convex hulls) + general non-convex games 
(polyhedrally representable)
Integrates integer programming machinery

Algorithms

Practical
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Support 
Enumeration


Sandholm et al., 2005; 


Lemke-Howson

Generalizations


Lemke and Howson, 1964; 



Wilson, 1971; 
 



Homotopy-
based

Scarf, 1967.

Equilibrium 
Programming

Facchinei and Pang, 2003; 



Pang and Scutari, 2011.

MIP


Sandholm et al., 2005; 



Carvalho et al., 2022. 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How do we compute an NE, if any? And how do we select 
one when multiple equilibria exist?



MIP


Sandholm et al., 2005; 



Carvalho et al., 2022. 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Equilibrium 
Programming

Facchinei and Pang, 2003; 



Pang and Scutari, 2011.



−4x1
1x2

1 + 6x1
2x2

2max
x1

6x1
1 + x1

2

3x1
1 + 2x1

2 ≤ 4

x1 ∈ {0,1}2

s.t.

🧙

max
x2

4x2
1 + 2x2

2

3x2
1 + 2x2

2 ≤ 4

x2 ∈ {0,1}2

s.t.

−x2
1 x1

1 − x2
2 x1

2

🧚

x1
1

x1
2

(0,1) (
2
3

,1)

(1,
1
2

)

(1,0)(0,0) x2
1

x2
2

(0,1) (
2
3

,1)

(1,
1
2

)

(1,0)(0,0)
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Best-responses



(0,0) (1,0) (0,1)

(0,0) 0 0 0 4 0 2

(1,0) 6 0 2 3 6 2

(0,1) 1 0 1 2 7 1

x2

x1
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−4x1
1x2

1 + 6x1
2x2

2max
x1

6x1
1 + x1

2

3x1
1 + 2x1

2 ≤ 4

x1 ∈ {0,1}2

s.t.

🧙

max
x2

4x2
1 + 2x2

2

2x2
1 + 3x2

2 ≤ 4

x2 ∈ {0,1}2

s.t.

−x2
1 x1

1 − x2
2 x1

2

🧚



max
x2

4x2
1 + 2x2

2

2x2
1 + 3x2

2 ≤ 4

x2 ∈ {0,1}2

s.t.

−x2
1 x1

1 − x2
2 x1

2

🧚

x2
1

x2
2

(0,1) (
2
3

,1)

(1,
1
2

)

(1,0)(0,0)

(0,0) (1,0) (0,1)

(0,0) 0 0 0 4 0 2

(1,0) 6 0 2 3 6 2

(0,1) 1 0 1 2 7 1

x2

x1
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x2

x1

−4x1
1x2

1 + 6x1
2x2

2max
x1

6x1
1 + x1

2

3x1
1 + 2x1

2 ≤ 4

x1 ∈ {0,1}2

s.t.

🧙

x1
1

x1
2

(0,1) (
2
3

,1)

(1,
1
2

)

(1,0)(0,0)

(0,0) (1,0) (0,1)

(0,0) 0 0 0 4 0 2

(1,0) 6 0 2 3 6 2

(0,1) 1 0 1 2 7 1
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x2

x1

(0,0) (1,0) (0,1)

(0,0) 0 0 0 4 0 2

(1,0) 6 0 2 3 6 2

(0,1) 1 0 1 2 7 1

35

Caveat: this requires an explicit enumeration of the  
players’ strategies…
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Caveat: this requires an explicit enumeration of the  
players’ strategies…

What if we formulate a Complementarity Problem starting from 
the linear relaxations of each player’s problem?



max
x1

(c1)⊤x1 + (x−1)⊤C1x1

A1x1 ≤ b1

x1 ∈ {0,1}m

s.t.

🧙

max
x2

(c2)⊤x2 + (x−2)⊤C2x2

A2x2 ≤ b2

x2 ∈ {0,1}m

s.t.

🧚

q =

c1

b1

⋮
cn

bn

M =

C1x−1 A1⊤

−A1 0
⋮

Cnx−n An⊤

−An 0

Provides all the MNEs for the game?

37

σ ≥ 0, z ≥ 0
z = Mσ + q, σ⊤z = 0



If  describe , i.e., convex gameAi, bi cl conv(𝒳i)

If  do not describe Ai, bi cl conv(𝒳i)

• Some MNEs may be excluded

• Some spurious MNEs may be introduced

• May not give bounds, as in Optimization

Yes

Maybe

• Prohibitive in practice…

38

Provides all the MNEs for the game?

σ ≥ 0, z ≥ 0
z = Mσ + q, σ⊤z = 0



0 ≤ σ ⊥ z = (Mtσ + qt) ≥ 0
Provides all the MNEs for the game?

If  describe Ai, bi cl conv(𝒳i)Yes

THEOREM (the shortened version)


Given an RBG  and a copy of it  where the feasible region 

of player  is  (instead of ), then:

G G̃
i cl conv (𝒳i) 𝒳i

• For any PNE  of , there exists an MNE  
of  so that each player get the same 

payoff in  and 


• If  has no PNEs, then  has no MNEs.

σ̃ G̃ ̂σ
G

G̃ G
G̃ G

39



If  describe Ai, bi cl conv(𝒳i)Yes

40

Computing MNEs  
in an RBG G

Computing PNEs  
in a “convexified” RBG G̃



If  describe Ai, bi cl conv(𝒳i)Yes
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Computing MNEs  
in an RBG G

Computing PNEs  
in a “convexified” RBG G̃≡



The Idea



The Idea

Compute an MNE for an RBG  by computing (P)NEs for a 

series of “easier” convex games 

G
G̃



The Idea

If  do not describe Ai, bi cl conv(𝒳i)Maybe

• Some MNEs may be excluded

• Some spurious MNEs may be introduced

• May not give bounds, as in Optimization

Compute an MNE for an RBG  by computing (P)NEs for a 

series of “easier” convex games 

G
G̃



The Idea

At each iteration, either we find an MNE for  or we refine the 
approximation in 

G
G̃

If  do not describe Ai, bi cl conv(𝒳i)Maybe

• Some MNEs may be excluded

• Some spurious MNEs may be introduced

• May not give bounds, as in Optimization

Compute an MNE for an RBG  by computing (P)NEs for a 

series of “easier” convex games 

G
G̃



PAG

Approximation

Given the polyhedrally-representable RBG , we construct 

polyhedral approximate game  where each  solves instead

G
G̃ i

max
xi

{f i(xi, x−i) = (ci)⊤xi + (x−i)⊤Cixi : xi ∈ 𝒳̃i}

𝒳̃i := {Ãixi ≤ b̃i, xi ≥ 0}, 𝒳i ⊆ cl conv(𝒳i) ⊆ 𝒳̃i

46

Namely,  (polyhedrally) outer approximates  𝒳̃i cl conv(𝒳i)



The LCP

Finding MNEs

max
xi

{f i(xi, x−i) = (ci)⊤xi + (x−i)⊤Cixi : xi ∈ 𝒳̃i}

𝒳̃i := {Ãixi ≤ b̃i, xi ≥ 0}, 𝒳i ⊆ cl conv(𝒳i) ⊆ 𝒳̃i

47

q̃ =

c1

b̃1

⋮
cn

b̃n

M̃ =

C1x−1 Ã1⊤

−Ã1 0
⋮

Cnx−n Ãn⊤

−Ãn 0

σ̃ ≥ 0, z̃ ≥ 0
z̃ = M̃σ̃ + q̃, σ̃⊤z̃ = 0



Is  an MNE for  ?σ̃ G



Ask the Oracle



Enhanced Sep. Oracle

Oracle

Given a point   and , the Enhanced 
Separation Oracle (ESO) determines that either

x̄ ( = σ̃i) 𝒳 ( = 𝒳i)

 

+ a cut for  and 

x̄ ∉ cl conv (𝒳)
cl conv(𝒳) x̄

  and an 
“extended proof”

x̄ ∈ cl conv (𝒳)

The extended proof is the support of , i.e. convex 
combination of elements in  and conic comb. 
of rays in .

x̄
 ext(cl conv(𝒳))

 rec(cl conv(𝒳))

In practice, the oracle builds a -polyhedral inner-
approximation of 

𝒱
cl conv (𝒳)
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INPUT: A point  and  (a tolerance )


OUTPUT: yes and proof or no and a cut





Repeat:


 
If : return yes and proof of inclusion


If : 


 separates  and  
 with  maximizer


If :  with  extreme ray


Else:


 If : return no and 


 Else: 

x̄ ( = σ̃i) 𝒳 ( = 𝒳i) ε

V = R = ∅ or storage

𝒲 ← conv(V) + cone(R)
x̄ ∈ 𝒲
x̄ ∉ 𝒲
π̄⊤x ≤ π̄0 x̄ 𝒲
𝒢 ← maxx{π̄⊤x : x ∈ 𝒳} ν

𝒢 = ∞ R ← R ∪ {r} r

π̄⊤ν < π̄⊤x̄ π̄⊤x ≤ π̄⊤ν
V ← V ∪ {ν}

Enhanced Separation Oracle
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👀  Inner approximation of cl conv(𝒳)



INPUT: A point  and  (a tolerance )


OUTPUT: yes and proof or no and a cut





Repeat:


 
If : return yes and proof of inclusion


If : 


 separates  and  
 with  maximizer


If :  with  extreme ray


Else:


 If : return no and 


 Else: 

x̄ ( = σ̃i) 𝒳 ( = 𝒳i) ε

V = R = ∅ or storage

𝒲 ← conv(V) + cone(R)
x̄ ∈ 𝒲
x̄ ∉ 𝒲
π̄⊤x ≤ π̄0 x̄ 𝒲
𝒢 ← maxx{π̄⊤x : x ∈ 𝒳} ν

𝒢 = ∞ R ← R ∪ {r} r

π̄⊤ν < π̄⊤x̄ π̄⊤x ≤ π̄⊤ν
V ← V ∪ {ν}

Enhanced Separation Oracle
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This is an LP



Enhanced Separation Oracle

max
π,π0

x̄⊤π − π0

πv⊤
k − π0 ≤ 0 ∀vk ∈ V

πr⊤
j ≤ 0 ∀rj ∈ R

π + u − v = 0
e⊤(u + v) = 1

u, v ≥ 0

YES Objective is 0
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INPUT: A point  and  (a tolerance )


OUTPUT: yes and proof or no and a cut





Repeat:


 
If : return yes and proof of inclusion


If : 


 separates  and  
 with  maximizer


If :  with  extreme ray


Else:


 If : return no and 


 Else: 

x̄ ( = σ̃i) 𝒳 ( = 𝒳i) ε

V = R = ∅ or storage

𝒲 ← conv(V) + cone(R)
x̄ ∈ 𝒲
x̄ ∉ 𝒲
π̄⊤x ≤ π̄0 x̄ 𝒲
𝒢 ← maxx{π̄⊤x : x ∈ 𝒳} ν

𝒢 = ∞ R ← R ∪ {r} r

π̄⊤ν < π̄⊤x̄ π̄⊤x ≤ π̄⊤ν
V ← V ∪ {ν}

Enhanced Separation Oracle
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INPUT: A point  and  (a tolerance )


OUTPUT: yes and proof or no and a cut





Repeat:


 
If : return yes and proof of inclusion


If : 


 separates  and  
 with  maximizer


If :  with  extreme ray


Else:


 If : return no and 


 Else: 

x̄ ( = σ̃i) 𝒳 ( = 𝒳i) ε

V = R = ∅ or storage

𝒲 ← conv(V) + cone(R)
x̄ ∈ 𝒲
x̄ ∉ 𝒲
π̄⊤x ≤ π̄0 x̄ 𝒲
𝒢 ← maxx{π̄⊤x : x ∈ 𝒳} ν

𝒢 = ∞ R ← R ∪ {r} r

π̄⊤ν < π̄⊤x̄ π̄⊤x ≤ π̄⊤ν
V ← V ∪ {ν}

Enhanced Separation Oracle
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INPUT: A point  and  (a tolerance )


OUTPUT: yes and proof or no and a cut





Repeat:


 
If : return yes and proof of inclusion


If : 


 separates  and  
 with  maximizer


If :  with  extreme ray


Else:


 If : return no and 


 Else: 

x̄ ( = σ̃i) 𝒳 ( = 𝒳i) ε

V = R = ∅ or storage

𝒲 ← conv(V) + cone(R)
x̄ ∈ 𝒲
x̄ ∉ 𝒲
π̄⊤x ≤ π̄0 x̄ 𝒲
𝒢 ← maxx{π̄⊤x : x ∈ 𝒳} ν

𝒢 = ∞ R ← R ∪ {r} r

π̄⊤ν < π̄⊤x̄ π̄⊤x ≤ π̄⊤ν
V ← V ∪ {ν}

Enhanced Separation Oracle
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The Cut-and-Play



The Cut-And-Play

 and tolerance G ε

Outer approximation  

for any player 

X̃i
0

i

Find PNE  in  via LCPσ̃ G̃

No PNE

Branch-or-Cut 
candidate?

No
NO MNE

Yes

ESO((σ̃i, 𝒳i, ε, ci + (Ci)⊤σ̃−i)

Yes

Found MNE for G

No

Yes, σ̃
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The Cut-And-Play

 and tolerance G ε

Outer approximation  

for any player 

X̃i
0

i

Find PNE  in  via LCPσ̃ G̃

No PNE

Branch-or-Cut 
candidate?

No
NO MNE

Yes

ESO((σ̃i, 𝒳i, ε, ci + (Ci)⊤σ̃−i)

Yes

Found MNE for G

No

Yes, σ̃
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For any , any inequality valid for  works for the 
algorithm (at any step).

i cl conv(𝒳i)

Further, a MIP solver can handle the LCP



Experiments



Knapsack Game (KPG)

max
xi {

m

∑
j=1

pi
j x

i
j +

n

∑
k=1,k≠i

m

∑
j=1

Ci
k,jx

i
j x

k
j :

m

∑
j=1

wi
j x

i
j ≤ bi, xi ∈ {0,1}m}

As for Wizard and Fairy, each player solves a binary Knapsack problem 
with some interaction terms in the objective

61

W.l.o.g., each player controls  itemsm



Knapsack Game
Algo Obj A Geo t (s) #TL #It Cuts MIP Efficiency (“~PoS”)

SGM - 0.73 0 8.43 - - 1.37

CnP-MIP SocialW -1 6.58 0 7.80 9.57 0.00 1.21

SocialW 0 6.13 0 5.73 6.47 2.30 1.22

SocialW 1 6.31 0 3.50 9.6 7.47 1.21

CnP-PATH - -1 0.36 0 7.60 10.2 0.00 1.21

- 0 0.05 0 5.27 5.9 2.07 1.35

- 1 0.04 0 3.23 8.87 7.10 1.33

SGM - -1 20.86 6 18.58 - - 1.50
CnP-MIP SocialW 0 61.08 0 13.70 17.0 0.00 1.23

SocialW 1 57.85 1 11.62 12.62 3.45 1.26

SocialW -1 68.20 0 9.48 16.8 10.32 1.23

CnP-PATH - 0 6.68 0 13.55 16.35 0.00 1.24

- 1 4.48 0 9.62 10.25 2.42 1.30

- -1 4.32 0 8.22 14.35 8.43 1.30
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Knapsack Game

Small

Large

nm ≤ 80

nm > 80
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Algo Obj A Geo t (s) #TL #It Cuts MIP Efficiency (“~PoS”)
SGM - 0.73 0 8.43 - - 1.37
CnP-MIP SocialW -1 6.58 0 7.80 9.57 0.00 1.21

SocialW 0 6.13 0 5.73 6.47 2.30 1.22
SocialW 1 6.31 0 3.50 9.6 7.47 1.21

CnP-PATH - -1 0.36 0 7.60 10.2 0.00 1.21
- 0 0.05 0 5.27 5.9 2.07 1.35
- 1 0.04 0 3.23 8.87 7.10 1.33

SGM - -1 20.86 6 18.58 - - 1.50
CnP-MIP SocialW 0 61.08 0 13.70 17.0 0.00 1.23

SocialW 1 57.85 1 11.62 12.62 3.45 1.26
SocialW -1 68.20 0 9.48 16.8 10.32 1.23

CnP-PATH - 0 6.68 0 13.55 16.35 0.00 1.24
- 1 4.48 0 9.62 10.25 2.42 1.30
- -1 4.32 0 8.22 14.35 8.43 1.30



Algo Obj A Geo t (s) #TL #It Cuts MIP Efficiency (“~PoS”)

SGM - 0.73 0 8.43 - - 1.37

CnP-MIP SocialW -1 6.58 0 7.80 9.57 0.00 1.21

SocialW 0 6.13 0 5.73 6.47 2.30 1.22

SocialW 1 6.31 0 3.50 9.6 7.47 1.21

CnP-PATH - -1 0.36 0 7.60 10.2 0.00 1.21

- 0 0.05 0 5.27 5.9 2.07 1.35

- 1 0.04 0 3.23 8.87 7.10 1.33

SGM - -1 20.86 6 18.58 - - 1.50
CnP-MIP SocialW 0 61.08 0 13.70 17.0 0.00 1.23

SocialW 1 57.85 1 11.62 12.62 3.45 1.26

SocialW -1 68.20 0 9.48 16.8 10.32 1.23

CnP-PATH - 0 6.68 0 13.55 16.35 0.00 1.24

- 1 4.48 0 9.62 10.25 2.42 1.30

- -1 4.32 0 8.22 14.35 8.43 1.30

Knapsack Game
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Algo Obj A Geo t (s) #TL #It Cuts MIP Efficiency (“~PoS”)

SGM - 0.73 0 8.43 - - 1.37

CnP-MIP SocialW -1 6.58 0 7.80 9.57 0.00 1.21

SocialW 0 6.13 0 5.73 6.47 2.30 1.22

SocialW 1 6.31 0 3.50 9.6 7.47 1.21

CnP-PATH - -1 0.36 0 7.60 10.2 0.00 1.21

- 0 0.05 0 5.27 5.9 2.07 1.35

- 1 0.04 0 3.23 8.87 7.10 1.33

SGM - -1 20.86 6 18.58 - - 1.50
CnP-MIP SocialW 0 61.08 0 13.70 17.0 0.00 1.23

SocialW 1 57.85 1 11.62 12.62 3.45 1.26

SocialW -1 68.20 0 9.48 16.8 10.32 1.23

CnP-PATH - 0 6.68 0 13.55 16.35 0.00 1.24

- 1 4.48 0 9.62 10.25 2.42 1.30

- -1 4.32 0 8.22 14.35 8.43 1.30

Knapsack Game
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Algo Obj A Geo t (s) #TL #It Cuts MIP Efficiency (“~PoS”)

SGM - 0.73 0 8.43 - - 1.37

CnP-MIP SocialW -1 6.58 0 7.80 9.57 0.00 1.21

SocialW 0 6.13 0 5.73 6.47 2.30 1.22

SocialW 1 6.31 0 3.50 9.6 7.47 1.21

CnP-PATH - -1 0.36 0 7.60 10.2 0.00 1.21

- 0 0.05 0 5.27 5.9 2.07 1.35

- 1 0.04 0 3.23 8.87 7.10 1.33

SGM - -1 20.86 6 18.58 - - 1.50
CnP-MIP SocialW 0 61.08 0 13.70 17.0 0.00 1.23

SocialW 1 57.85 1 11.62 12.62 3.45 1.26

SocialW -1 68.20 0 9.48 16.8 10.32 1.23

CnP-PATH - 0 6.68 0 13.55 16.35 0.00 1.24

- 1 4.48 0 9.62 10.25 2.42 1.30

- -1 4.32 0 8.22 14.35 8.43 1.30

Knapsack Game
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Algo Obj A Geo t (s) #TL #It Cuts MIP Efficiency (“~PoS”)

SGM - - 0.73 0 8.43 - - 1.37

CnP-MIP SocialW ❌ 6.58 0 7.80 9.57 0.00 1.21

SocialW ✅ 6.13 0 5.73 6.47 2.30 1.22

SocialW ✅✅ 6.31 0 3.50 9.6 7.47 1.21

CnP-PATH - ❌ 0.36 0 7.60 10.2 0.00 1.21

- ✅ 0.05 0 5.27 5.9 2.07 1.35

- ✅✅ 0.04 0 3.23 8.87 7.10 1.33

SGM - - 20.86 6 18.58 - - 1.50
CnP-MIP SocialW ❌ 61.08 0 13.70 17.0 0.00 1.23

SocialW ✅ 57.85 1 11.62 12.62 3.45 1.26

SocialW ✅✅ 68.20 0 9.48 16.8 10.32 1.23

CnP-PATH - ❌ 6.68 0 13.55 16.35 0.00 1.24

- ✅ 4.48 0 9.62 10.25 2.42 1.30

- ✅✅ 4.32 0 8.22 14.35 8.43 1.30

Knapsack Game
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Algo Obj A Geo t (s) #TL #It Cuts MIP Efficiency (“~PoS”)

SGM - 0.73 0 8.43 - - 1.37

CnP-MIP SocialW -1 6.58 0 7.80 9.57 0.00 1.21

SocialW 0 6.13 0 5.73 6.47 2.30 1.22

SocialW 1 6.31 0 3.50 9.6 7.47 1.21

CnP-PATH - -1 0.36 0 7.60 10.2 0.00 1.21

- 0 0.05 0 5.27 5.9 2.07 1.35

- 1 0.04 0 3.23 8.87 7.10 1.33

SGM - -1 20.86 6 18.58 - - 1.50
CnP-MIP SocialW 0 61.08 0 13.70 17.0 0.00 1.23

SocialW 1 57.85 1 11.62 12.62 3.45 1.26

SocialW -1 68.20 0 9.48 16.8 10.32 1.23

CnP-PATH - 0 6.68 0 13.55 16.35 0.00 1.24

- 1 4.48 0 9.62 10.25 2.42 1.30

- -1 4.32 0 8.22 14.35 8.43 1.30

Knapsack Game
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Algo Obj A Geo t (s) #TL #It Cuts MIP Efficiency (“~PoS”)

SGM - 0.73 0 8.43 - - 1.37

CnP-MIP SocialW -1 6.58 0 7.80 9.57 0.00 1.21

SocialW 0 6.13 0 5.73 6.47 2.30 1.22

SocialW 1 6.31 0 3.50 9.6 7.47 1.21

CnP-PATH - -1 0.36 0 7.60 10.2 0.00 1.21

- 0 0.05 0 5.27 5.9 2.07 1.35

- 1 0.04 0 3.23 8.87 7.10 1.33

SGM - -1 20.86 6 18.58 - - 1.50
CnP-MIP SocialW 0 61.08 0 13.70 17.0 0.00 1.23

SocialW 1 57.85 1 11.62 12.62 3.45 1.26

SocialW -1 68.20 0 9.48 16.8 10.32 1.23

CnP-PATH - 0 6.68 0 13.55 16.35 0.00 1.24

- 1 4.48 0 9.62 10.25 2.42 1.30

- -1 4.32 0 8.22 14.35 8.43 1.30

Knapsack Game
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Algo Obj A Geo t (s) #TL #It Cuts MIP Efficiency (“~PoS”)

SGM - 0.73 0 8.43 - - 1.37

CnP-MIP SocialW -1 6.58 0 7.80 9.57 0.00 1.21

SocialW 0 6.13 0 5.73 6.47 2.30 1.22

SocialW 1 6.31 0 3.50 9.6 7.47 1.21

CnP-PATH - -1 0.36 0 7.60 10.2 0.00 1.21

- 0 0.05 0 5.27 5.9 2.07 1.35

- 1 0.04 0 3.23 8.87 7.10 1.33

SGM - -1 20.86 6 18.58 - - 1.50
CnP-MIP SocialW 0 61.08 0 13.70 17.0 0.00 1.23

SocialW 1 57.85 1 11.62 12.62 3.45 1.26

SocialW -1 68.20 0 9.48 16.8 10.32 1.23

CnP-PATH - 0 6.68 0 13.55 16.35 0.00 1.24

- 1 4.48 0 9.62 10.25 2.42 1.30

- -1 4.32 0 8.22 14.35 8.43 1.30

Knapsack Game
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NASPs



🇨🇦

🌊☀

🇺🇸

🏭⚡

Canada U.S.

This is a simultaneous game among bilevel (i.e., sequential) 
programs (NASP)

72

Simultaneous 

Game



Are leaders (countries) further reducing their emission  
if they optimize the income from a carbon-tax?

Does trade among countries under a carbon-tax reduce emissions?
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Are leaders (countries) further reducing their emission  
if they optimize the income from a carbon-tax?

Does trade among countries under a carbon-tax reduce emissions?

It depends on what source energy producers use (i.e., coal vs solar). 
In general, no.
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Are leaders (countries) further reducing their emission  
if they optimize the income from a carbon-tax?

Does trade among countries under a carbon-tax reduce emissions?

Since trade is about money, the intuitive answer is no.
However, we found that countries with large quantities of clean energy  

can fulfil the need of countries with fossil fuel, thus reducing the overall emissions.

It depends on what source energy producers use (i.e., coal vs solar). 
In general, no.
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Remarks, Ideas, Directions



Some Remarks

77

In MPGs, the plausibility of the Nash equilibrium can 
only stem from the availability of efficient tools to 

compute it.

Optimization Framework Scalable and flexible Hybridization



MPGs

IPGs RBGs

Finite Games



MPGs

IPGs RBGs

Finite Games
max

xi
{f i(xi, x−i) = (ci)⊤xi + (x−i)⊤Cixi : xi ∈ 𝒳i}

If non-convexities are not necessarily integer:

So-called Reciprocally-Bilinear Games

Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, Sriram Sankaranarayanan, The Cut and  
Play Algorithm: Computing Nash Equilibria via Outer Approximations, arXiv:2111.05726



An MPG library

80

https://github.com/ds4dm/ZERO

Gabriele Dragotto, Sriram Sankaranarayanan, Margarida Carvalho, Andrea Lodi, ZERO: Playing 
Mathematical Programming Games, arXiv:2111.07932



🧚🧙

Models::IPG::IPG IPG_Model(&GurobiEnv, IPG_Instance);

// Select the equilibrium to compute a Nash Equilibrium

IPG_Model.setAlgorithm(Data::IPG::Algorithms::CutAndPlay);

// Extra parameters

IPG_Model.setDeviationTolerance(3e-4);

IPG_Model.setNumThreads(8);

IPG_Model.setLCPAlgorithm(Data::LCP::Algorithms::PATH);

     

// Lock the model

IPG_Model.finalize();

// Run!

IPG_Model.findNashEq();



Developments of efficient algorithms and 
theoretical frameworks to handle complex non-
convex problems

MPGs and applications

Methodology

Practice

Rational behavior through inequalities and 
Optimization, new solutions concepts

Fairness
Companies, governments, and in general, 
organizations are likely to solve optimization 
problems. Trade-off selfishness and social good

Directions
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Methodology Practice Fairness

Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, Sriram Sankaranarayanan, The Cut and  
Play Algorithm: Computing Nash Equilibria via Outer Approximations, arXiv:2111.05726

Margarida Carvalho, Gabriele Dragotto, Felipe Feijoo, Andrea Lodi, Sriram Sankaranarayanan,  
When Nash Meets Stackelberg, arXiv:1910.06452
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Carvalho M, Lodi A, Pedroso J (2022) Computing equilibria for integer programming games. European Journal of 
Operational Research


Carvalho M, Lodi A, Pedroso JP, Viana A (2017) Nash equilibria in the two-player kidney exchange game. 
Mathematical Programming 161(1-2):389–417


David Fuller J, C¸elebi E (2017) Alternative models for markets with nonconvexities. European Journal of 
Operational Research 261(2):436–449,


Facchinei F, Pang JS, eds. (2004) Finite-Dimensional Variational Inequalities and Complementarity Problems. 
Springer Series in Operations Research and Financial Engineering 
 
Ferris, M.C. and Munson, T.S., 1999. Interfaces to PATH 3.0: Design, implementation and usage. Computational 
Optimization and Applications, 12(1), pp.207-227.


Gabriel SA, Siddiqui SA, Conejo AJ, Ruiz C (2013) Solving Discretely-Constrained Nash–Cournot Games with an 
Application to Power Markets. Networks and Spatial Economics 13(3):307–326,


Koeppe M, Ryan CT, Queyranne M (2011) Rational Generating Functions and Integer Programming Games. 
Operations Research 59(6):1445–1460




Extra
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Normal/Extensive-form games


 ❌ No complex operational constraints


 ❌ Explicit (and burdensome) 
representation of action sets


✅ Popular in Game Theory literature

Comparing MPGs

Equilibrium Programming


 ❌ Often  is continuous


 ❌ Algos: Complementarity or V.I.


❌ Global convergence?


❌ Non-convexities?


✅ Efficient in well-behaved cases


𝒳i



When Nash Meets Stackelberg
3

Joint work with Margarida Carvalho, Felipe Feijoo, Andrea Lodi and 
Sriram Sankaranarayanan 



Contributions

It is -hard to determine a MNE/PNE, in generalΣp
2

A full enumeration scheme, and an inner 
approximation scheme

Energy market tests, with Chilean-Argentinean 
case study

Complexity

Algorithms

Insights
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🏰

🧚🧙

Magicville

Reformulate each Stackelberg 
game as a single-level

Optimization problem
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🏰

🧚🧙

⛩

🧜🐲

Simultaneous 

Game

Magicville Witchtown

Then, the game is an RBG, if objectives are 
compatible
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🏰

🧚🧙

⛩

🧜🐲

Magicville Witchtown

Among the reformulated bilevel programs, namely 
the real players
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🏰

🧚🧙

Magicville

max
xi

{(ci)⊤xi + (x−i)⊤Cixi : xi ∈ ℱi}

The reformulated feasible region 
includes the KKT for the 

followers’ problems
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🏰

🧚🧙

Magicville

max
xi

{(ci)⊤xi + (x−i)⊤Cixi : xi ∈ ℱi}

Algorithms

Fully enumerate cl conv(ℱi)

Inner approximate  (dual to CnP)cl conv(ℱi)
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🏰

🧚🧙

Magicville

Algorithms

Fully enumerate cl conv(ℱi)

Inner approximate cl conv(ℱi)

Time (s) # TL

120.2

3.73

9/149

0/149
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Stackelberg Games

(Stackelberg, 1934;  

Candler and Norto, 1977)

The Problem(s)

A Stackelberg game is a sequential game with perfect 
information where the players act in rounds:

• We consider games where there is an unique first-round player 
called the leader, who solves an optimization problem


• The second-round players are the followers solving 
optimization problems depending on the leader’s choices

A solution is a vector of strategies that are optimal for both the 
leader and its followers

In the general case, determining a solution is -hard𝒩𝒫
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Could we reformulate the Stackelberg game 
as a single optimization problem?



Not always, yet…



Stackelberg Games

(Basu et al., 2020)

The Problem(s)

A Stackelberg game can be reformulated into a single-level 
optimization problem if:

1. The leader’s objective function is linear in its variables and the 
ones of its followers


2. The leader’s constraints are linear constraints

3. The followers solve convex quadratic optimization problems

Specifically, the feasible region of this program is a union of 
polyhedra
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Complexity



NASPs

Complexity

THEOREM

Given a NASP with 2 leaders with 1 follower each, so that each 
follower solves a linear program and the leaders all have linear 

objectives in their variables:

1. It is  to determine if the game an MNE/PNE


2. If all reformulated problems have a bounded feasible region 
, there exists an MNE

Σp
2 − hard

ℱi
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Algorithmic Ideas



INPUT: A NASP 


OUTPUT: a NE or none exists


For every player 


Compute  through Balas’


Solve an LCP with the convex hulls 
If LCP has a solution: return yes and NE


Else: return no NE exists

N

i = 1,2,…, n
cl conv(ℱi)

Full Enumeration
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Inner approximation

Inner-approximate cl conv(𝒳i)
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Inner approximation

Polyi
k

Compute an MNE starting with a single 
polyhedron
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Inner approximation

Polyi
k

Polyi
k+1

If there exists a NE, and also a 
deviation, add it to the next 

iteration
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Inner approximation

Polyi
k

Polyi
k+1

cl conv(𝒳i)
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Inner approximation

Polyi
k

Polyi
k+1

Polyi
k+2
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Inner approximation

Polyi
k

Polyi
k+1

Polyi
k+2

cl conv(𝒳i)
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INPUT: A NASP 


OUTPUT: a NE or none exists


For every player 


Initialize  with one polyhedron from the union


While True:


Solve an LCP to determine an NE 
If LCP has a solution: 


If no deviation: return yes and NE


Else deviation for : add the polyhedron to 


If LCP has no solution: 


If no more polyhedra: return none exists


Else: add random polyhedra to 

N

i = 1,2,…, n
ℱi

*

i ℱi
*

ℱi
*

Inner approximation

109



Clean Energy Experiments



Energy Game
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Energy Game

Small
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Energy Game
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Energy Game
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Energy Game

Large
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Energy Game

116



NASPs
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