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Commuting to work
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Network Congestion
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here are n players optimizing simultaneously the
shortest path on a graph
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Choices of other players
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Network Congestion

A regulator observes the outcome of the interaction but is uncertain of
the agents’ utilities and actions

't wants to intervene in the game



Decision-making is rarely an individual task

A regulator observes the outcome of the interaction but is uncertain of
the agents’ utilities and actions
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Learning Rationality in
Potential Games

Stefan Clarke, Bartolomeo Stellato, and Jaime Fernandez Fisac




Problem setup

Simultaneous and non-cooperative game where i = 1,...,n solves

Choices of other players
min  u;(z;; 24,0, p)
CEZ

st. x; € X, ={B;(0,n)x; + D; (0, u)x_; < b;(0, 1)}

A set of unknown rationality parameters Known and observable context parameters

There exists a convex-quadratic potential function ®(x; 0, 1)

Minimizing this function yields a Nash equilibrium



Our approach

Simultaneous and non-cooperative game where i = 1,...,n solves
min  u;(z;; 04,0, p)

:Lz’l,

st. x, € X; =4{B;0,u)x; + D; (0, u)x_; < b;(0,p)}
We observe dataD = {(z", 5")}7_, with equilibria and context

Inverse equilibrium task
“stimate @ so that it predicts the Nash equilibria XX




The three ingredients

0 Potentiality Nash equilibria: ma}n{<1>(x;9,u) x, €A, i=1,...,n}

Learnin
e Probleng: in/\iilg L(0;D) L2 norm between target and prediction
X ) )

subject to Prediction is a Nash equilibrium,

0 belongs to a set of feasible parameters

A and b, and R and ¢ are just “compact” way to represent the
olayers constraints and objectives
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The three ingredients

‘ Potentiality

Learning
Problem

Nash equilibria: mén{(l)(x;é’,u) €A, 1=1,...

. K _
min - (1/K) 37 (|27 — 2%|3

xhk k.0

subject to 0 = R(0, i")x"

c(0, i)

A9, ") AR,

0 < b(0, i") — A0, ")z" LA >0

0 c0O.

1}
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The three ingredients

‘ Potentiality Nash equilibria: mﬂ}n{<1>(x;9,u) x, €A, i=1,...,n}

Learning | % N T
Problem 111111 (1/K) Zk:l 2" — 27|35

xhk k.0
subject to 0 = R(0, ™)z + ¢(8, i") + A0, ") \*,
0 < b8, a") — A8, @")z" L \* >0
0 € O.

We would like to find a (local) minimum of the learning
oroblem with a first-order method



The three ingredients

e Differentiation

he learning problem Is non-convex:

» We differentiate L(6;D)with respect to the
parameters @

e How? We fix the “tight” complementarity
constraints to get a convex inner approximation
of the learning problem

Active set, i.e., the set of indices of tight
complementarity constraints

We employ VgL (0;D) to update our estimates of @
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The Algorithm

INPUT Max iterations T, step sizes {n},_,, and data D = {(z*, p*)} 1,

0 Initialization nitial parameters 6

Select Sample a data point ()'ck, _k)
Loop 1 Play (x )\t) — mm{cI)(x 9(t>,u ) x; € AX; (Q(t) ) Vi}
Times
Differentiate Compute VoL(0;D) on the current active set

ALY W) — 1, VoL (V)

OUTPUT o)
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Convergence

Convergence

Qur algorithm eventually finds either a local minimum of the smoothed
loss or a saddle point

The algorithm mimics a stochastic gradient descent

lim E[||¥g(@™)l2] = 0

T'— o0
smoothened version of the loss
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Network Congestion

Time

u2($27 L —3q 97 :u) — ZeEE Qi—le_zl@mie(mle T T xne)

A set of unknown rationality parameters

Personal preferences

Known and observable context parameters

Traffic, weather, road conditions
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Network Congestion

Predicted NE

Iteration O

True NE
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Network Congestion

— == 3 agents, 8 nodes

3 agents, 10 nodes
3 agents, 20 nod

3 agents. 30 nod
Test error SELES,

— == 3 agents, 40 nod

0 20 o0 (D 100 125 150 175

[terations
Dataset of 90 equilibria

We |learn good estimates of the rationality parameters
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Cournot Games

There are n players producing a homogeneous good @

ui(x;x_;,0, 1) = —F(x)x; + cix;

price x quantity

F(x) :a—bej
j=1

Unknown rationality parameters




Cournot Games

Test error
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Cournot Game

— == 30 agents
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Iterations

QOur algorithm scales to large datasets
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Cournot Games

| timeout
‘. B Active-set 000
N '
(Gurobi 400-
4 300
Test error Run time (s)
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2_
100+
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Number of agents

Qur algorithm scales to large datasets
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Once we know the parameters...
We design market interventions



Decision-making is rarely an individual task

A regulator observes the outcome of the interaction but is uncertain of
the agents’ utilities and actions
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Econometrica, Vol. 70, No. 4 (July, 2002), 1341-1378

THE ECONOMIST AS ENGINEER: GAME THEORY,
EXPERIMENTATION, AND COMPUTATION
AS TOOLS FOR DESIGN ECONOMICS!

By ALVIN E. ROTH?

“Designers therefore cannot work only with the simple conceptual models used for
theoretical insights into the general working of markets. Instead,

are natural complements to game
theory in the work of design.”
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The Toolkit: Integer Programming Games

An Integer Programming Game (IPG) 1s a simultaneous one-shot (static) game
among n players where each playeri = 1,...,n solves

naljm{uz(a;‘z,iv_z) :x € X}

There iIs common knowledge of rationality, i.e., each plavyer is
rational and there is complete information

Integer Programming Games: A Gentle Computational
Introduction

Koppe et al., (20T1), Sagratella (2015), D. et al (2021), D. (2022)
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Decision-making is rarely an individual task

Self-driven interactions with other decision-makers
deciding by solving complex (e.g., non-convex) optimization problems

Modeling Informative Practically

Capabilities Solutions Useful
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A few examples
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Supply Chain and
Transportation

Cronert and Minner, 2021 (OR, TR-B)
Sagratella et al 2020 (EJOR)
Carvalho et al. 2018 (IJ Production Economics)

Simultaneous game
among “bilevel” players

Carvalho, D. et al, 2023

(Management Science)

Cybersecurity

D. et al, 2023

(Ericsson Inc, - Patent pending)
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The bad news: hon-convexity
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Historically, convexity played a central role
N shedding light on the existence and
computation of Nash eqguilibria
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State-of-the-art

Sagratella (2016)

Carvalho et al. (2022)

Schwarze and Stein
(2022)

Carvalho, D., Lodi,
Sankaranarayanan (2021)

Cronert and Minner (2021)

D. and Scatamacchia
(2023)

Branching Method

Sample Generation
Method

Branch-and-Prune

Cut-And-Play

Exhaustive Sample
Generation Method

Zero Regrets

Payoff Types

Convex payoffs

Separable Payoffs

Quadratic Payoffs

Separable Payoffs

Separable Payoffs

Linearizable Payoffs

Constraints

Bounded Convex Integer

Bounded Mixed-Integer
Linear

Bounded Convex-Integer

Polyhedral convex-hull

Bounded Pure-Integer

Bounded Mixed-Integer
Linearizable
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Summing up

Algorithmic

Game Theory

Optimization

Model complex and hierarchical structure of
Interactions among agents

Learn games’ parameters from data

Prescribe effective regulatory interventions
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