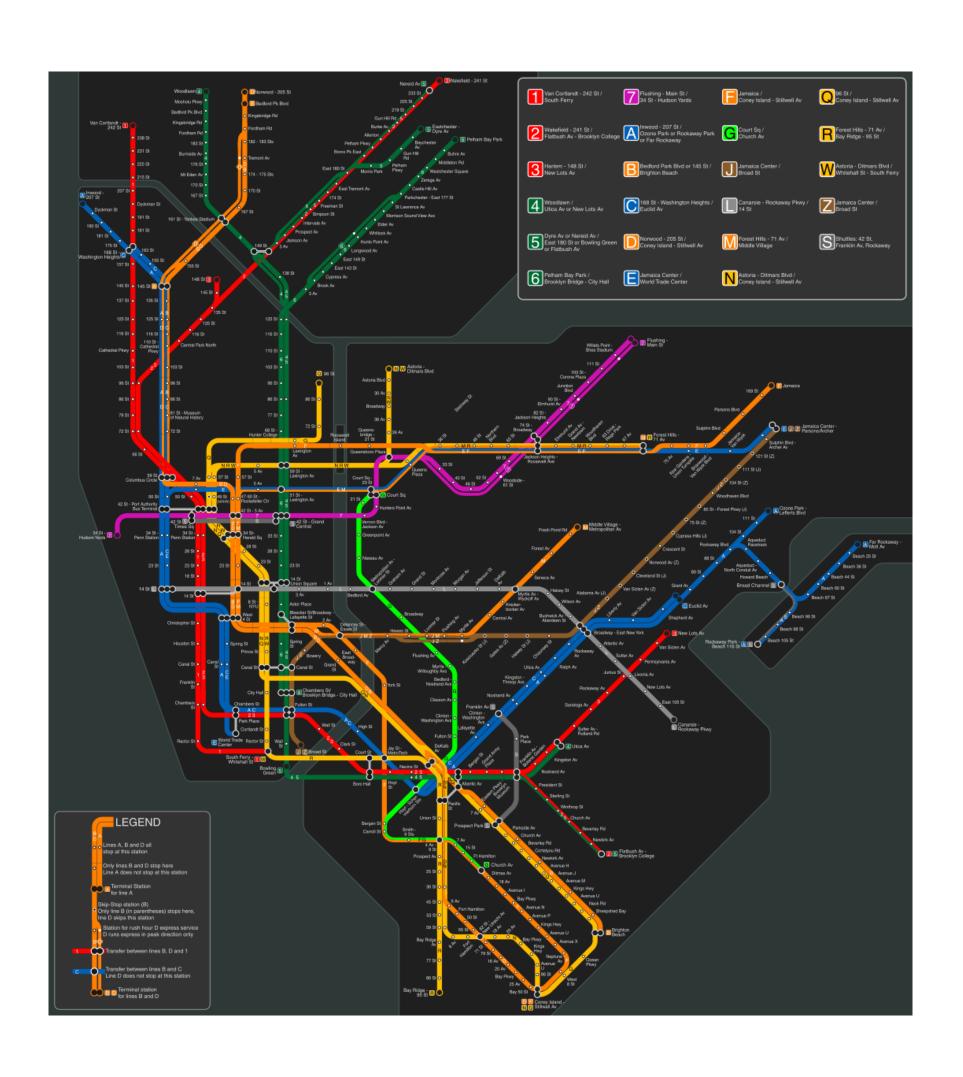
Learn-and-Play

Data, Uncertainty and Interventions

Gabriele Dragotto

ALOP Colloquium - Trier July 17th 2023

Commuting to work

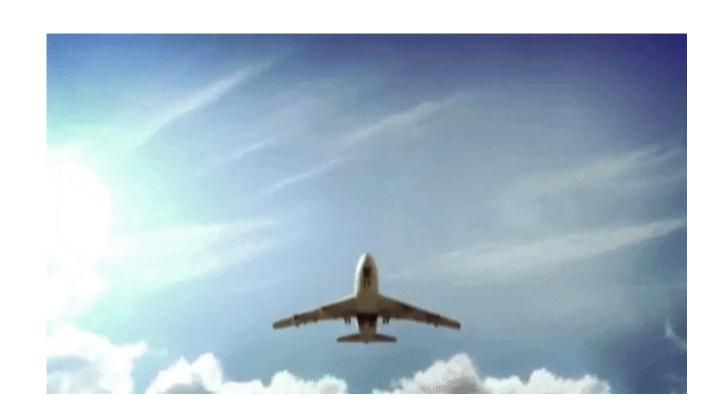


There are n players optimizing simultaneously the shortest path on a graph

Choices of other players

$$\min_{x_i} \{ u_i(x_i; x_{-i}) : x_i \in \mathcal{X}_i \}$$

Choices of player i

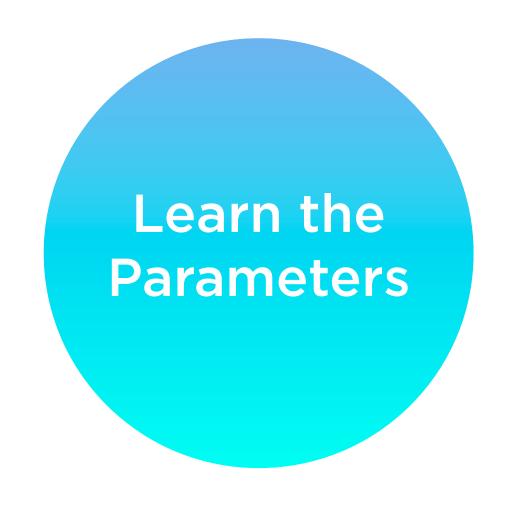


A regulator **observes the outcome** of the interaction but **is uncertain** of the agents' utilities and actions

It wants to intervene in the game

Decision-making is rarely an individual task

A regulator **observes the outcome** of the interaction but **is uncertain** of the agents' utilities and actions



Decision-making is rarely an individual task

A regulator **observes the outcome** of the interaction but **is uncertain** of the agents' utilities and actions



Learning Rationality in Potential Games

Stefan Clarke, Bartolomeo Stellato, and Jaime Fernandez Fisac

Problem setup

Simultaneous and non-cooperative game where i=1,...,n solves

Choices of other players

$$\min_{x^{i}} u_{i}(x_{i}; \boldsymbol{x}_{-i}, \boldsymbol{\theta}, \boldsymbol{\mu})$$
s.t. $x_{i} \in \mathcal{X}_{i} = \{B_{i}(\boldsymbol{\theta}, \boldsymbol{\mu})x_{i} + D_{i}(\boldsymbol{\theta}, \boldsymbol{\mu})\boldsymbol{x}_{-i} \leq b_{i}(\boldsymbol{\theta}, \boldsymbol{\mu})\}$

A set of unknown rationality parameters

Known and observable context parameters

There exists a convex-quadratic potential function $\Phi(x;\theta,\mu)$

Minimizing this function yields a Nash equilibrium

Our approach

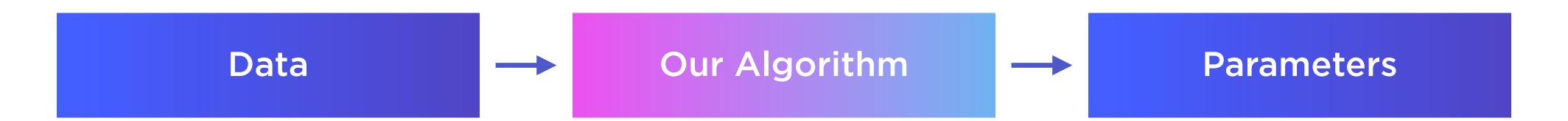
Simultaneous and non-cooperative game where $i=1,\ldots,n$ solves

$$\min_{x^i} \quad u_i(x_i; x_{-i}, \boldsymbol{\theta}, \boldsymbol{\mu})$$
s.t.
$$x_i \in \mathcal{X}_i = \{B_i(\boldsymbol{\theta}, \boldsymbol{\mu}) x_i + D_i(\boldsymbol{\theta}, \boldsymbol{\mu}) x_{-i} \le b_i(\boldsymbol{\theta}, \boldsymbol{\mu})\}$$

We observe data $\mathcal{D} = \{(\bar{x}^k, \bar{\mu}^k)\}_{k=1}^K$ with equilibria and context

Inverse equilibrium task

Estimate heta so that it predicts the Nash equilibria $ar{x}^k$



1 Potentiality

Nash equilibria: $\min_{x} \{ \Phi(x; \theta, \mu) : x_i \in \mathcal{X}_i, i = 1, \dots, n \}$

2 Learning Problem

 $\min_{x^k,\lambda^k, heta}$ $\mathcal{L}(heta;\mathcal{D})$ L2 norm between target and prediction subject to θ belongs to a set of feasible parameters $\theta\in\Theta$

A and b, and R and c are just "compact" way to represent the players constraints and objectives

Potentiality Nash equilibria: $\min_x \{\Phi(x;\theta,\mu): x_i \in \mathcal{X}_i, i=1,\ldots,n\}$

2 Learning Problem

$$\min_{x^k, \lambda^k, \theta} \frac{(1/K) \sum_{k=1}^K \|x^k - \bar{x}^k\|_2^2}{0 = R(\theta, \bar{\mu}^k) x^k + c(\theta, \bar{\mu}^k) + A(\theta, \bar{\mu}^k)^T \lambda^k,}$$
subject to
$$0 \leq b(\theta, \bar{\mu}^k) - A(\theta, \bar{\mu}^k) x^k \perp \lambda^k \geq 0$$

$$\theta \in \Theta.$$

1 Potentiality

Nash equilibria: $\min_{x} \{ \Phi(x; \theta, \mu) : x_i \in \mathcal{X}_i, i = 1, \dots, n \}$

2 Learning Problem

$$\min_{x^k, \lambda^k, \theta} \frac{(1/K) \sum_{k=1}^K \|x^k - \bar{x}^k\|_2^2}{0 = R(\theta, \bar{\mu}^k) x^k + c(\theta, \bar{\mu}^k) + A(\theta, \bar{\mu}^k)^T \lambda^k,}$$
subject to
$$0 \leq b(\theta, \bar{\mu}^k) - A(\theta, \bar{\mu}^k) x^k \perp \lambda^k \geq 0$$

$$\theta \in \Theta.$$

We would like to find a (local) minimum of the learning problem with a first-order method

3 Differentiation

The learning problem is non-convex:

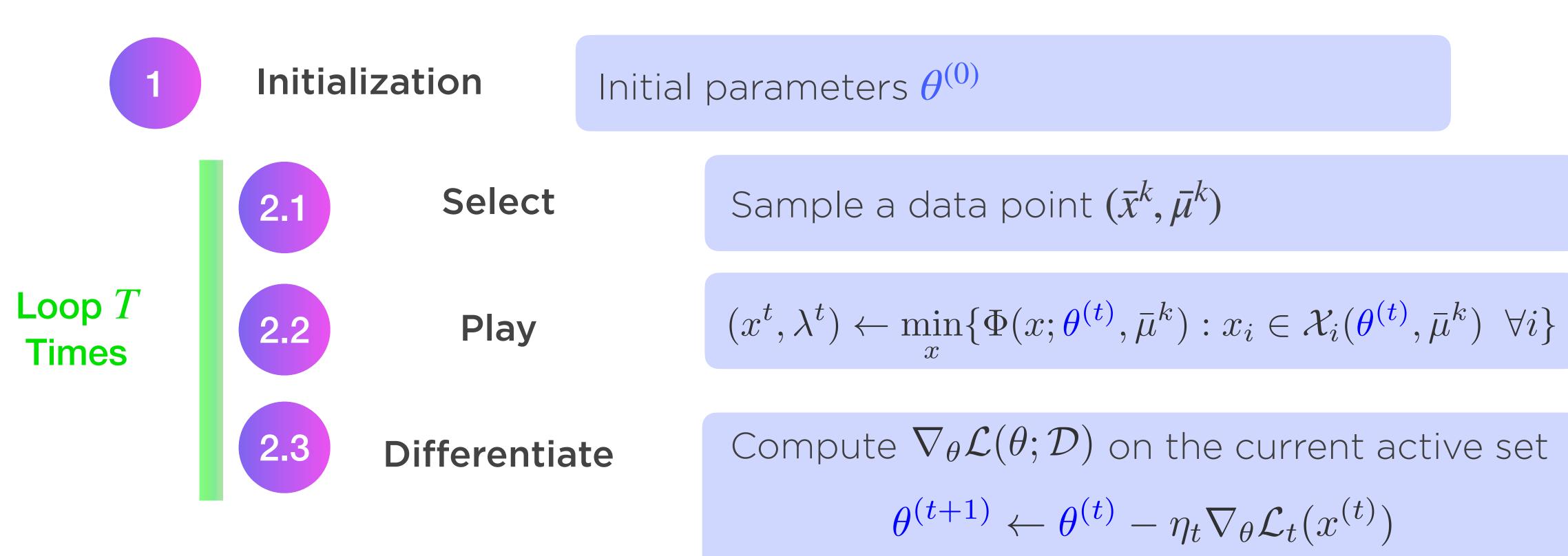
- We differentiate $\mathcal{L}(\theta; \mathcal{D})$ with respect to the parameters θ
- How? We fix the "tight" complementarity constraints to get a convex inner approximation of the learning problem

Active set, i.e., the set of indices of tight complementarity constraints

We employ $abla_{ heta}\mathcal{L}(heta;\mathcal{D})$ to update our estimates of heta

The Algorithm

INPUT Max iterations T, step sizes $\{\eta\}_{t=1}^T$, and data $\mathcal{D}=\{(\bar{x}^k,\bar{\mu}^k)\}_{k=1}^K$



Convergence

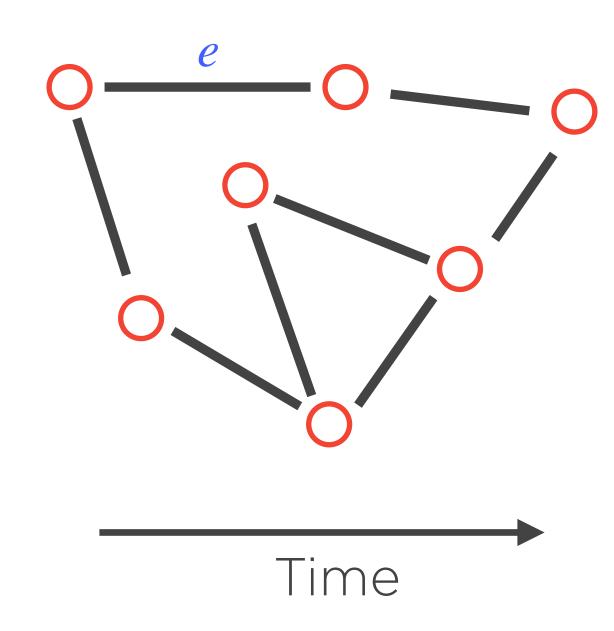
Convergence

Our algorithm eventually finds either a **local minimum of the smoothed loss** or a saddle point

The algorithm mimics a stochastic gradient descent

$$\lim_{T \to \infty} \mathbb{E}[\|\nabla g(\theta^{(T)})\|_2] = 0$$

smoothened version of the loss



$$u_i(x_i; x_{-i}, \theta, \mu) = \sum_{e \in E} \theta_{ie}^{\mathsf{T}} l_e x_{ie}(x_{1e} + \dots + x_{ne})$$

A set of unknown rationality parameters

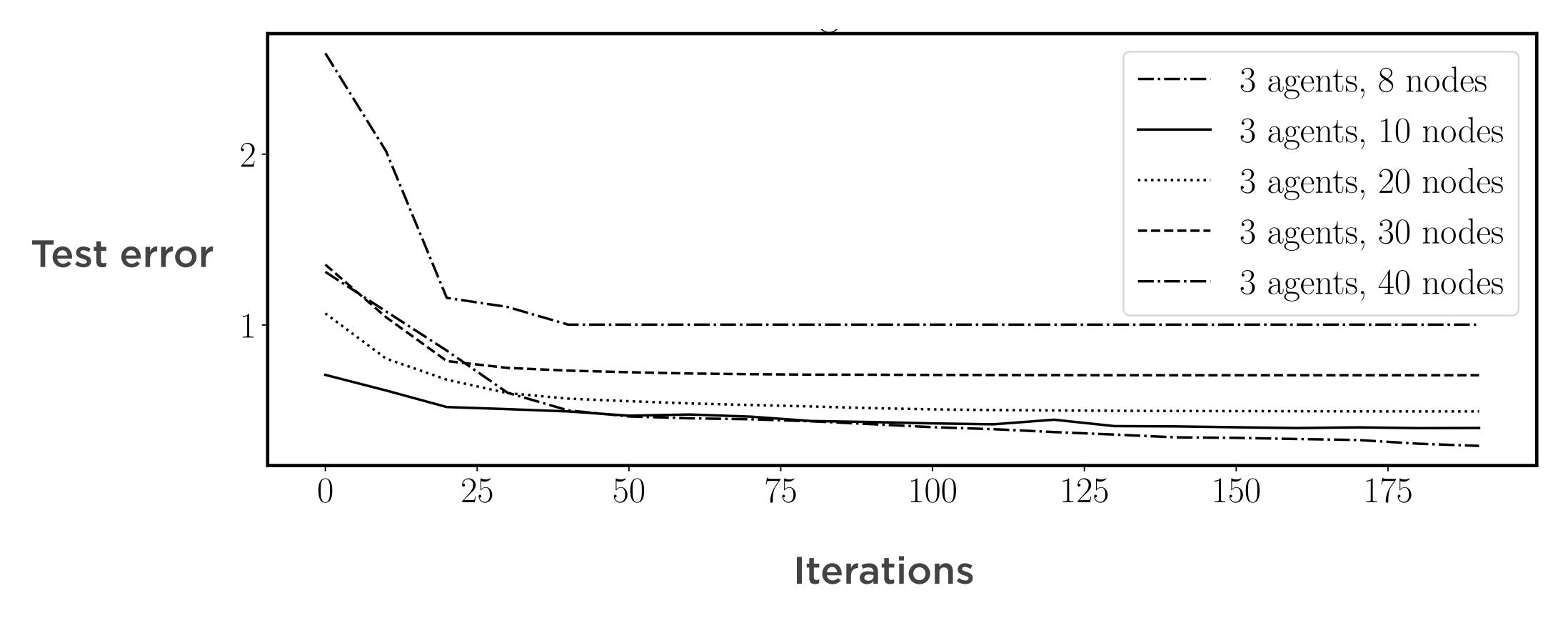
Known and observable context parameters

Personal preferences

Traffic, weather, road conditions

Iteration 0

Predicted NE True NE



Dataset of 90 equilibria

We learn good estimates of the rationality parameters

There are n players producing a homogeneous good $\stackrel{\bullet}{\bullet}$

edus goda 💮

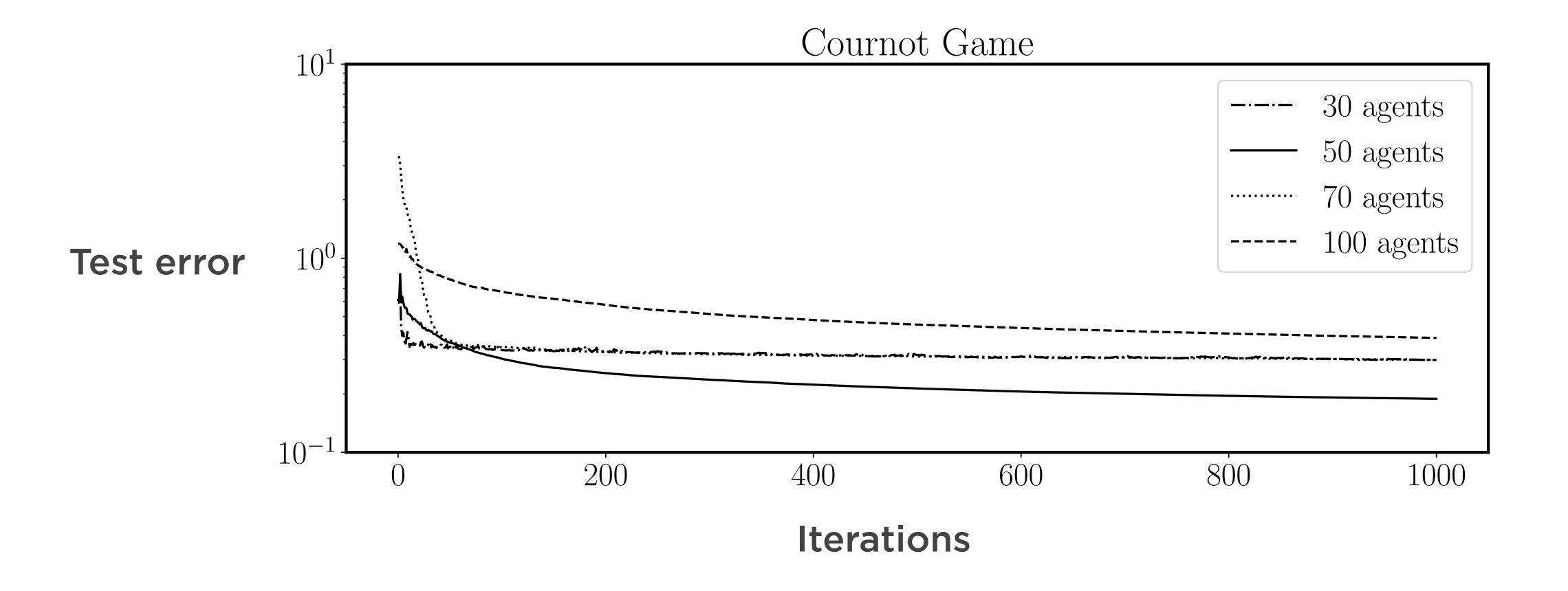
cost x quantity

$$u_i(x_i; x_{-i}, \theta, \mu) = -F(x)x_i + c_i x_i$$

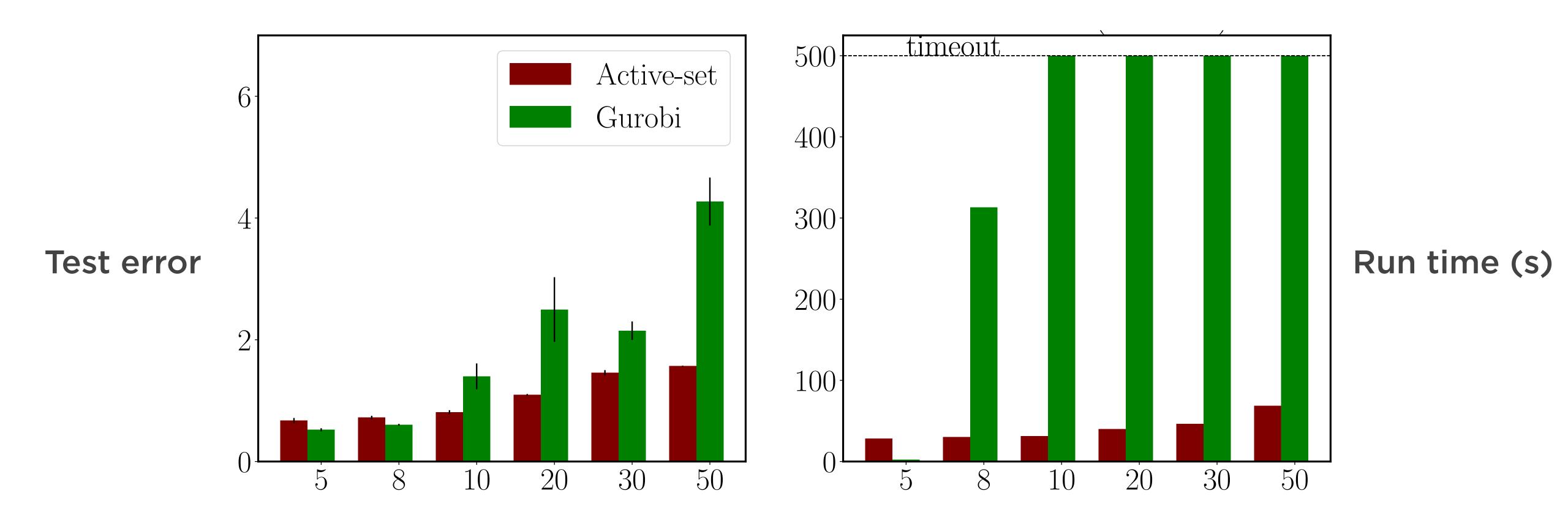
price × quantity

$$F(x) = a - b \sum_{j=1}^{n} x_j$$

Unknown rationality parameters



Our algorithm scales to large datasets



Number of agents

Our algorithm scales to large datasets

Number of agents

Our algorithm scales to large datasets

Decision-making is rarely an individual task

A regulator **observes the outcome** of the interaction but **is uncertain** of the agents' utilities and actions

Econometrica, Vol. 70, No. 4 (July, 2002), 1341-1378

THE ECONOMIST AS ENGINEER: GAME THEORY, EXPERIMENTATION, AND COMPUTATION AS TOOLS FOR DESIGN ECONOMICS¹

BY ALVIN E. ROTH²

"Designers therefore cannot work only with the simple conceptual models used for theoretical insights into the general working of markets. Instead, market design calls for an engineering approach.

Experimental and computational economics are natural complements to game theory in the work of design."

The Toolkit: Integer Programming Games

An Integer Programming Game (IPG) is a *simultaneous one-shot (static)* game among n players where each player i=1,...,n solves

$$\min_{x_i} \{ u_i(x_i; x_{-i}) : x_i \in \mathcal{X}_i \}$$

$$\mathcal{X}_i := \{ g_i(x_i) \le b_i, \ x_i \in \mathbb{Z}^{\alpha_i} \times \mathbb{R}^{\beta_i} \}$$

There is common knowledge of rationality, i.e., each player is rational and there is complete information

Integer Programming Games: A Gentle Computational Introduction

Decision-making is rarely an individual task

Self-driven interactions with other decision-makers

deciding by solving complex (e.g., non-convex) optimization problems

A few examples

Supply Chain and Transportation

Cronert and Minner, 2021 (OR, TR-B)

Sagratella et al 2020 (EJOR)

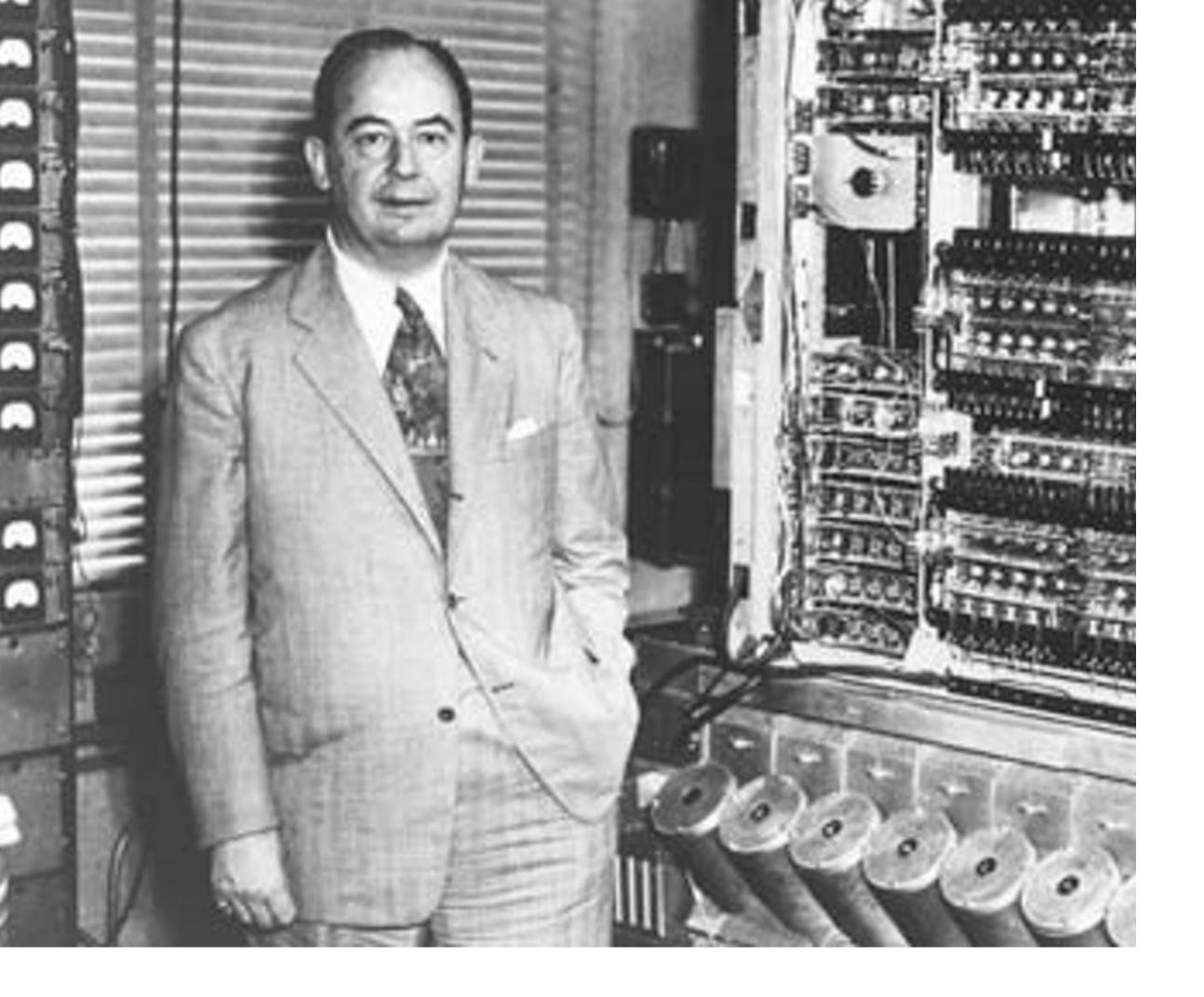
Carvalho et al. 2018 (IJ Production Economics)

Simultaneous game among "bilevel" players

Carvalho, **D.** et al, 2023 (Management Science)

Cybersecurity

D. et al, 2023 (Ericsson Inc, - Patent pending)



The bad news: non-convexity

$$\mathcal{X}_i := \{ g_i(x_i) \le b_i, \ x_i \in \mathbb{Z}^{\alpha_i} \times \mathbb{R}^{\beta_i} \}$$

Historically, convexity played a central role in shedding light on the existence and computation of Nash equilibria

State-of-the-art

		Payoff Types	Constraints
Sagratella (2016)	Branching Method	Convex payoffs	Bounded Convex Integer
Carvalho et al. (2022)	Sample Generation Method	Separable Payoffs	Bounded Mixed-Integer Linear
Schwarze and Stein (2022)	Branch-and-Prune	Quadratic Payoffs	Bounded Convex-Integer
Carvalho, D., Lodi, Sankaranarayanan (2021)	Cut-And-Play	Separable Payoffs	Polyhedral convex-hull
Cronert and Minner (2021)	Exhaustive Sample Generation Method	Separable Payoffs	Bounded Pure-Integer
D. and Scatamacchia (2023)	Zero Regrets	Linearizable Payoffs	Bounded Mixed-Integer Linearizable

Summing up

Model complex and hierarchical structure of interactions among agents

Learn games' parameters from data

Prescribe effective regulatory interventions

www.dragotto.net

Learning Rationality in Potential Games arXiv 2303:11188

Integer Programming Games: A Gentle Computational Introduction

INFORMS 2023 TutORial - October 2023

