Integer Programming Games

A Gentle Computational Overview

Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, and Sriram Sankaranarayanan

Margarida Carvalho Université de Montréal

Gabriele Dragotto
Princeton University

Andrea Lodi Cornell Tech and Technion - IIT

Sriram Sankaranarayanan IIM Ahmedabad

What are IPGs?

Congestion Games

There are n players simultaneously optimizing the shortest path on a network

Choices of other players

$$\min_{x^i} \{ u^i(\underline{x^i}; \underline{x^{-i}}) : \underline{x^i} \in \mathcal{X}^i \}$$

Choices of player i

How do we **algorithmically compute** a *stable* **outcome?**

maximize
$$x_1^1 + 2x_2^1$$

s.t. $3x_1^1 + 4x_2^1 \le 5$, $x_1^1 \in \{0, 1\}^2$

$$\underset{x^1}{\text{maximize}} \quad + 2$$

s.t.
$$3 + 4 \le 5$$
, $x^1 \in \{0, 1\}^2$

Their "profits" interact

$$\underset{x^1}{\operatorname{maximize}}$$

$$+2$$

$$3 + 4 \le 5,$$

$$x^1 \in \{0, 1\}^2$$

maximize
$$x^2$$
 $3 + 5$

s.t.
$$2 + 5 \le 5$$

 $x^2 \in \{0, 1\}^2$

Their "profits" interact

maximize
$$x^1$$
 x^2 x^2 x^3 $x^4 \in \{0,1\}^2$

maximize
$$3 + 5 - 5 - 4$$
 s.t. $2 + 5 \le 5$, $x^2 \in \{0, 1\}^2$

Stable solutions

s.t.
$$3x_1^1 + 4x_2^1 \le 5$$
,

x_1^1	x_2^1	x_1^2	x_2^2		
0	0	0	0	0	0
1	O	O	O	1	O
0	1	0	0	2	O
O	O	1	O	0	3
O	O	O	1	0	5
1	O	1	O	-1	-2
O	1	O	1	-1	-1
0	1	1	O	2	3
1	O	0	1	1	5

Three **feasible strategies** for each player:

$$(x_1^i, x_2^i) \in \{(0, 0), (0, 1), (1, 0)\}$$

But only two guarantee stability

and

Stable solutions

0

0

0

-1

But only two guarantee stability

Players cannot profitably deviate:

- If blue plays
 —, it would get -1 instead of 2
- If red plays 🍬, it would get -1 instead of 3

SolarCorp Inc.

Simultaneous Game

Hydro Inc.

Canada taxes and regulates the production

SolarCorp Inc.

Simultaneous Game

Hydro Inc.

This is a simultaneous game among bilevel (i.e., sequential) programs

And it can get more complex...

And it get more complex...

Supply Chain and Transportation

Cronert and Minner, 2021 (OR, TR-B)

Sagratella et al., 2020 (EJOR)

C. et al., 2018 (IJ Production Economics)

Simultaneous game among "bilevel" players

C. et al., 2023 (Management Science)

Cybersecurity

D. et al., 2023 (Ericsson Inc, - Patent pending)

Decision-making is rarely an individual task

It involves the mutual interaction of several self-interested agents and their individual preferences

Decision-making is rarely an individual task

What if agents (players) decide by solving mixed-integer optimization problems?

The Toolkit: Integer Programming Games

An Integer Programming Game (IPG) is a **simultaneous one-shot (static)** game among n players where each player i=1,...,n solves

$$\max_{x^i} \{ f^i(x^i; x^{-i}) : x^i \in \mathcal{X}^i \}$$

$$\mathcal{X}^i := \{ g^i(x^i) \le b^i, \ x^i \in \mathbb{Z}^{\alpha^i} \times \mathbb{R}^{\beta^i} \}$$

There is common knowledge of rationality, i.e., each player is rational and there is complete information

Stable solutions: Nash equilibria

 $\bar{x}=(\bar{x}^1,...,\bar{x}^n)$ is a Pure Nash Equilibrium (PNE) if, for any player i,

$$f^i(\bar{x}^i, \bar{x}^{-i}) \ge f^i(\hat{x}^i, \bar{x}^{-i}) \quad \forall \hat{x}^i \in \mathcal{X}^i$$

Mixed Nash equilibrium

Players **randomize** over their pure strategies i.e., probability distribution over \mathcal{X}^i

Approximate equilibrium

Players can **deviate** up to an ϵ e.g., relative or absolute deviation

Stable solutions: Nash equilibria

 $\bar{x} = (\bar{x}^1, ..., \bar{x}^n)$ is a Pure Nash Equilibrium (PNE) if, for any player i,

$$f^i(\bar{x}^i, \bar{x}^{-i}) \ge f^i(\hat{x}^i, \bar{x}^{-i}) \quad \forall \hat{x}^i \in \mathcal{X}^i$$

PNEs and MNEs (C. et al.,

- 1. Deciding if an IPG has a pure equilibrium is Σ_2^p -complete
- 2. Deciding if an IPG has a mixed equilibrium is Σ_2^p -complete
- 3. If \mathcal{X}^i is finite for any player i, there exists a mixed equilibrium

Why?

Decision-making is rarely an individual task

What if agents (players) decide by solving mixed-integer optimization problems?

Why? Modeling Capabilities

They extend traditional resource-allocation tasks and combinatorial optimization problems to a multi-agent setting

Indivisible quantities, fixed-charge costs and logical implications often require discrete variables

Energy — Gabriel et al., 2013, David Fuller and Çelebi, 2017
 Supply Chain — Anderson et al., 2017
 Assortment-Price competitions — Federgruen and Hu, 2015
 Kidney Exchange Problems — C. et al., 2017
 Cybersecurity — D. et al., 2023

Why? Informative Contents of Equilibria

Econometrica, Vol. 70, No. 4 (July, 2002), 1341-1378

THE ECONOMIST AS ENGINEER: GAME THEORY, EXPERIMENTATION, AND COMPUTATION AS TOOLS FOR DESIGN ECONOMICS¹

BY ALVIN E. ROTH²

"Designers therefore cannot work only with the simple conceptual models used for theoretical insights into the general working of markets. Instead, market design calls for an engineering approach.

Experimental and computational economics are natural complements to game theory in the work of design."

How?

The bad news: non-convexity

$$\mathcal{X}^i := \{ g^i(x^i) \le b^i, \ x^i \in \mathbb{Z}^{\alpha^i} \times \mathbb{R}^{\beta^i} \}$$

Historically, convexity played a central role in shedding light on the existence and computation of Nash equilibria

State-of-the-art

		Payoff Types f^i	Constraints \mathcal{X}^i
Sagratella, 2016	Branching Method	Convex payoffs	Bounded Convex Integer
C. et al., 2022	Sample Generation Method	Separable Payoffs	Bounded Mixed-Integer Linear
Schwarze and Stein, 2022	Branch-and-Prune	Quadratic Payoffs	Bounded Convex-Integer
C. et al., 2021	Cut-And-Play	Separable Payoffs	Polyhedral Convex-hull
Cronert and Minner, 2021	Exhaustive Sample Generation Method	Separable Payoffs	Bounded Pure-Integer
D. and Scatamacchia, 2023	/ero Regrets		Bounded Mixed-Integer Linearizable

A 3-Phase Process

The Approximate-Play-Improve cycle

A 3-Phase Process

INPUT A game G described by the payoffs $f^i(x^i;x^{-i})$ and the actions \mathcal{X}^i

1 Approximate

Create $ilde{\emph{G}}$: Approximate \mathcal{X}^i with some set $ilde{\mathcal{X}}^i$

2 Play

Compute a solution \bar{x} to \tilde{G} by solving an **optimization** problem

3 Improve

Check if \bar{x} is a Nash equilibrium

If not, refine at least a $\tilde{\mathcal{X}}^i$ and go to $\boxed{2}$ Otherwise: **return the Nash equilibrium** \bar{x}

Phase 1: Approximate

Approximate

Create $ilde{\emph{G}}$: Approximate \mathcal{X}^i with some set $ilde{\mathcal{X}}^i$

The approximation $\mathcal{ ilde{X}}^i$ should exhibit desirable properties (e.g., convexity)

Computing the equilibria in $ilde{G}$ is **relatively easier** compared to G

However, the approximation often changes the structure of equilibria

Outer Approximation

$$\tilde{\mathcal{X}}^i\supseteq\mathcal{X}^i$$

Inner Approximation

$$\tilde{\mathcal{X}}^i \subseteq \mathcal{X}^i$$

Phase 2: Play

Play

Compute a solution \bar{x} to \tilde{G} by solving an **optimization** problem

Compute a tentative equilibrium $ar{x}$ for the approximated game $ilde{G}$

Naturally depends on: the "desirable properties" of Phase 1

If $\tilde{\mathcal{X}}^i$ is convex, and f^i is concave in $x^i \to \text{Complementarity Problem}$

Phase 3: Improve

3

Improve

Check if \bar{x} is a Nash equilibrium.

If not, refine at least a $\tilde{\mathcal{X}}^i$ and go to 2 Otherwise: **return the Nash equilibrium** \bar{x}

"Separation theorem" on steroids for Nash equilibria

Answer **two** questions:

Is \bar{x}^i a feasible strategy with respect to \mathcal{X}^i ?

Is \bar{x} a feasible Nash equilibrium?

If one answer is negative, it provides a "proof"

Phase 3: Improve

3

Improve

Check if \bar{x} is a Nash equilibrium

If not, refine at least a $\mathcal{\tilde{X}}^i$ and go to 2 Otherwise: **return the Nash equilibrium** \bar{x}

Is \bar{x} a feasible Nash equilibrium?

Stability Step

No player should deviate from \bar{x}^i given \bar{x}^{-i} $\tilde{x}^i = \arg\max_{x^i} \{ f^i(x^i, \bar{x}^{-i}) : x^i \in \mathcal{X}^i \}$

No iff
$$f^i(\bar{x}^i; \bar{x}^{-i}) < f^i(\tilde{x}^i; \bar{x}^{-i})$$

Is \bar{x}^i a feasible strategy with respect to \mathcal{X}^i ?

Membership Step

If $\bar{x}^i \notin \mathcal{X}^i$, then refine $\tilde{\mathcal{X}}^i$

A 3-Phase Process

INPUT A game G described by the payoffs $f^i(x^i;x^{-i})$ and the actions \mathcal{X}^i

1 Approximate

Create $ilde{\emph{G}}$: Approximate \mathcal{X}^i with some set $ilde{\mathcal{X}}^i$

2 Play

Compute a solution \bar{x} to \tilde{G} by solving an **optimization** problem

3 Improve

Check if \bar{x} is a Nash equilibrium

If not, refine at least a $\tilde{\mathcal{X}}^i$ and go to $\boxed{2}$ Otherwise: **return the Nash equilibrium** \bar{x}

An example: Cut-and-Play

INPUT A game G described by the separable payoffs $f^i(x^i;x^{-i})$ and the actions \mathcal{X}^i

Approximate

Create $ilde{G}$: Approximate \mathcal{X}^i with some polyhedron $ilde{\mathcal{X}}^i$

Play

Compute a solution $ar{x}$ to $ar{G}$ via a complementarity problem

Improve

Check if \bar{x} is a Nash equilibrium

If not, refine at an $\tilde{\mathcal{X}}^i$ via **branching/cutting** 2

Otherwise: return the Nash equilibrium \bar{x}

The Challenges

An equilibrium might not exist in a given game G. How to detect infeasibility?

An equilibrium **might not exist** in an approximation $ilde{G}$ while one exists in the original game G (and vice versa)

Outer vs Inner approximations

This phase often involves solving a hard optimization problem, e.g., a mixed-integer program, variational inequality or complementarity problem

If multiple equilibria exist, selecting (i.e., optimizing) a specific one is often complex from an algorithmic-design perspective

State-of-the-art

		Enumerate	Optimize	Payoff Types f^i	Constraints \mathcal{X}^i
Sagratella, 2016	Outer Approximation		×	Convex payoffs	Bounded Convex Integer
C. et al., 2022	Inner Approximation	×	×	Separable Payoffs	Bounded Mixed- Integer Linear
Schwarze and Stein, 2022	Outer Approximation		×	Quadratic Payoffs	Bounded Convex- Integer
C. et al., 2021	Outer Approximation	×	×	Separable Payoffs	Polyhedral Convex- hull
Cronert and Minner, 2021	Inner Approximation		×	Separable Payoffs	Bounded Pure- Integer
D. and Scatamacchia, 2023	Outer Approximation			Linearizable Payoffs	Bounded Mixed- Integer Linearizable

```
Tasks: 139, 239 thr; 5 running
20 0 356M 2884 1772 S 0.0 0.3 0:02.29 /usr/bin/ibus-da ECONNREFUSED 111 Connection refused
          Protecting Critical Infrastructure
                                                                        suppress all warning messages
                                                                        pay attention to warning messages
                        4 S 0.0 0.1 0:00.16 /usr/lib/x86_64- Change: 2017-03-16 11:42:39.209110393 -0700
                                                     0000b70 00 00 00 00 00 00 00 00 30 03 00 00 12 00 00 00 |........
                                                           73 02 00 00 12 00 00 00 00 00 00 00 00 00 00 00 | 5......
```


An attacker gain access to the network at an unknown node (e.g., server)

An attacker gain access to the network at an unknown node (e.g., server)

The network operator decides how to protect their network

Critical Node Game

Players act simultaneously

Multilevel Critical Node Problem

Players act sequentially

Real-time deployment of protective resources A-priori security posture assessment

Mathematical Models

Attacker

The attacker has a budget A

Attacking $i \in R$ costs c_i^a and gives a benefit p_i^a

The variable α_i is 1 if the attacker attacks $i \in R$

Defender

The defender has a budget D

Defending $i \in R$ costs c_i^d and gives a benefit p_i^d

The variable x_i is 1 if the defender protects $i \in R$

Mathematical Models

\mathcal{X}_{i}	$lpha_i$	Payoff ^D	Payoff ^A	
0	0	p_i^d	$-\gamma p_i^a$	$\gamma \in [0,1]$: opportunity cost of not attacking
0	1	δp_i^d	p_i^a	$\delta \in [0,1]$: degradation with ongoing attack
1	0	ϵp_i^d	0	$\varepsilon \in [0,1]$: degradation with passive mitigation
1	1	ηp_i^d	$(1-\eta)p_i^a$	$\eta \in [0,1]$: degradation with active mitigation

Mathematical Models

Critical Node Game

Simultaneous IPG

Multilevel
Critical Node Problem

Bilevel Game

$$\max_{x} \left\{ f^{d}(x; \alpha) : d^{\top}x \leq D, x \in \{0, 1\}^{|R|} \right\}$$
$$\max_{\alpha} \left\{ f^{a}(\alpha; x) : a^{\top}\alpha \leq A, \alpha \in \{0, 1\}^{|R|} \right\}$$

$$\max_{x,\hat{\alpha}} f^{d}(x,\hat{\alpha})$$
s.t $d^{\top}x \leq D$,
$$x \in \{0,1\}^{|R|},$$

$$\hat{\alpha} \in \arg\max_{\alpha} \left\{ f^{a}(\alpha;x) : a^{\top}\alpha \leq A, \alpha \in \{0,1\}^{|R|} \right\}.$$

Metrics

We measure time, and the effectiveness of the defender's strategy

Price of Security _ Best defender's objective for any outcome
$$(\bar{x}, \bar{\alpha})$$
 Defender's objective in $(\bar{x}, \bar{\alpha})$

All the tests and algorithms of this tutorial are implemented in our open-source package **ZERO**

https://github.com/ds4dm/ZERO

Results

Looking Ahead

Decision-making is rarely an individual task

Toolbox to model competitive decision-making with mixed-integer optimization

There are still (too) many open questions

Some perspectives

Deployment of IPGs in new application domains

Develop theoretically-grounded and efficient both general and problem-specific algorithms

Solutions balancing the decision-makers selfishness with societal goals

Integer Programming Games: A Gentle Computational Overview

INFORMS TutORial in Operations Research, 2023

Margarida

Gabriele

Andrea

Sriram

arXiv 2303.11188