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In this talk

’ll try to convince you that Integer Programming Games are:

« Mathematically and conceptually connected with Robust and Bilevel Optimization

« Another way to frame “structured” uncertainty

« A natural multi-agent extension of Combinatorial Optimization

e At the second level

. A Cool & area of research we should get explore!

'll also try to use more images and less math since it’'s Thursday evening...



Unless specified, the (most of the) games of this talk are simultaneous

As standard game theory/bilevel notation, let X! denote the vector of
variables of player i, and let the operator (-)™' be (+) except i






Decision-making is rarely an individual task.

Uncertainty
Interactions with other decision-makers

Time-evolving dynamics

@Teo v



Network Formation



Network Formation Game

There are n players opti
shortest path on a grap

e The player 1 needs to

MiziNg simultaneou

go from s' to 1!

e Player 1 a weight w!

NG = (V,E) so that:

sly the

e Any (h,]) EE:h/l€ Vhasacostc, €Z"

The cost of each edge is split proportionally
to each player’s weight

Chen and Roughgarden (2006), Anshelevich et al. (2008), Nisan et al. (2Z008)



Network Formation Game

kK
(h)EE D k1 WETy,

x;;l = 1 iff player i selects edge (h,]) € E

Chen and Roughgarden (2006), Anshelevich et al. (2008), Nisan et al. (2008)

i
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2" are linear flow constraints for the nath st — 1
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max
51

S.t.

1 1
6)61 + x,

3x11 + 2x21 <4

x! e {0,1}?
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Imax
5!

S.t.

Their profits interact

6x; + X, —4x;x7 + 6x)x3 max 4xi + 2x;
3x; +2x, <4 s.t. 2xf+3x; <
x' e {0,1} x> € {0,1}

Knapsack Games (Carvalho et al., 2022 D. and Scatamacchia, 2022)

2.1
—A A T

A

2.1
Xy Ay
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Facility Location and Desigh Game

Sellers (players) compete for the demand of
customers located Iin a given geographical

@ area. Each player decides:
e Where to open its selling facilities
3 = e What assortment to sell (i.e., what design)

? 1
ZZEL ZTERl uljrmlr
Imax E wj
:I;Z

n P Share of customers’ demand
Zk—l SIZEL ZreRz WUyl

jEJ lr

—

e

s.t. Z Z flal < B, Budget
leL reR;
Aboolian et al. (2007), P - :
Cronert and Minner (2020), Z r,. <1 Vlel, One facility per location

re Ry

ri €40,1} VIie€ L Vr € Ry
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- We are trying to

This blanket will
2eep you warm...
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Multiple followers
dependent

@Martine @Juan
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SolarCorp Inc.

Simultaneous
Game

“Cournot Game”

Hydro Inc.

13



Canada taxes and regulates the production

Simultaneous
Game

SolarCorp Inc. Hydro Inc.
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SolarCorp Inc.

Seqguential
“Stackelberg” Game

Simultaneous
Game

Hydro Inc.
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Canada U.S.

Simultaneous
Game

This Is a simultaneous game among optimistic bilevel (i.e.,
sequential) programs

When Nash Meets Stackelberg (Carvalho et al., 2022)
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Canada

max{(c)'x'+ x7)'Cix' : x' € F')
X! —

The reformulated “Bilevel”
feasible region includes the KKT
for the followers’ problems

(@everybody
Azt <bt | |
2= Mz + ¢ () ({2} =0} U {z} = 0})
' >0,2z" >0 jec?

@Ted
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@Martine’s “Bilevel with Dependent Followers”

max{(c)'x'+ x7H)'Cx' : x' € F')
xl

Algt < bt
Yl € argmaxyj{gj(yj,y_j,w)  H)y + K9w <0} Vj=1,...,J
' = (w,yt,...,y7)

Each player 1 solves a bilevel problem with:

e [he leader having linear coupling constraints

. The J' followers solving parametrized in
their leader and the other followers’ variables

23






What are these games?

An Integer Programming Game (MPG) is a simultaneous one-s
game among n players where each playeri=1,...,n so

max {u'(x;x7Y) : x' € ')
D

Parametrized in x™ ' ;= (xl, oxth el o X

L= 1AIX < b, xl € 7% x RF')

Koppe et al., (20T71), Sagratella (2015), D. et al (2021), D. (2022)

Not (static)

VEeS
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Why IPGs?

They extend traditional resource-allocation tasks and
combinatorial optimization problems to a multi-agent setting

quantities, fixed production costs and logical

disjunctions often require discrete variables
(e.q., Bikhchandani and Mamer (199/))

Energy — Gabriel et al. (2013), David Fuller and Celebi (2017)
Supply Chain — Anderson et al. (201/)
Assortment-Price competitions — Federgruen and Hu (2015)
Kidney Exchange Problems — Carvalho et al. (201/)
Cybersecurity

+ A good stake of the people in this room

260



Nash Equilibria as Solutions

e ('1, ..., X" is a Pure Nash Equilibrium (PNE) if

W', X > W@, xH) vire

Mixed strategies: randomizing over clconv( i)

‘ clconv(Z™)

Mixed Nash Equilibrium (MNE) /T the above holds with mixed strategies

27



tence

clency

yrithms

When does at least an equilibrium exist?

How do different equilibria differ in their properties?

How do we compute and select equilibria?

Who’s the specific case of whom?

23









Fundamental Theorems

PNEs and MNEs (Carvalho et. al, 2018)

1. Deciding if an IPG has a PNE is X — complete
2. Deciding if an IPG has a MNE is 2 — complete

3. Actually, if Qs finite for any player 1, there exists an MNE

The “Energy Game” (Carvalho et. al, 2022)

1. Deciding if an “Energy Game” has a PNE is Z’; — complete
2. Deciding if an “Energy Game” has a MNE is 2’; — complete

3. Actually, if 2 is finite for any player 1, there exists an MNE

31



Fundamental Theorems

The “Energy Game” (Carvalho et. al, 2022)

1. Deciding if an “Energy Game” has a PNE is Zg — complete
2. Deciding if an "Energy Game” has a MNE is 212’ — complete

3. Actually, if Qs finite for any player 1, there exists an MNE

Knapsack Game (D. and Scatamacchia, 2022)

1. Deciding it a Knapsack Game has a PNE is Z’; — complete

32






max
5!

S.t.

6x1 + x2 4)c1 xl + 3x2x2

3x11 + 2)621 <4

x! e {0,1}?

Their items interact!

max
2

S.t.

9) 2.1
4)61 + 2x2 —X{X| —

3x12 + 2x22 <4

x* € {0,1}?

2.1
Xy Ay
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max
51

S.t.

Their items interact!

6x1 + x2 4x1 xl + 3x2x2 IIi%X
3x; +2x, <4 s.t.
x! e {0,1}?

How good is a NE?

y)
4)61 + 2x2

2 2
3x1 + 2x2 <

x? € {0,1}?

2.1
—A A T

4

2.1
Xy Ay
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How good is a NE?

@Juan



How good is a NE?




max 6x] +x; —dx]x? + 3x)x7 max 4x + 2x5 —xix] — x3x,
s X
s.t. 3x +2x; <4 st 3x7+2x} <4
x!' € {0,1}? x* € {0,1}?

(%}, %) = (1,0) and (1, %3) = (1,0) with W=2+3 =5

xLxh)=1,00and B2 =01) W=6+2=38
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Optimal Social

Welfare

"Best" N

Optimal Social

Welfare

"Worst" NE

PoS

PoA
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How?

do we use and solve them In practice

Optimizing over equilibria in Integer Computing Nash eqguilibria via
Programming Games Convex Outer Approximations
(D. and Scatamacchia, 2021) (Carvalho et al., 2021)
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How?

do we use and solve them In practice

The “Robust” way The “Dual” Bilevel way

47



The ZERO Regrets Algorithm

Joint work with Rosario Scatamacchia (Politecnico di Torino, Italy)

How



Integer Programming Games

We consider Pure-Integer IPGs with bounded variables
(although this generalizes to mixed-integer)

max{u'(x,x7) :x' € L), L' = {Ax' < b, x' € Z™)

X

There is common knowledge of rationality, thus each player is rational
and there is complete information,

44



|Ce

Not all Nash equilibria were created eqgual
.e., Price of Stability (PoS) and Anarchy (PoA)

Restrictive assumptions on the game’s structure to
guarantee the existence/tractability

Lack of a general-purpose methodology to compute
and mostly select equilibria

: No general methodolog)

45



ZERO Regrets
Koeppe et al. (2011)
Sagratella (2016)

Del Pia et al. (2017)

Carvalho, D., Lodi,
Sankaranarayanan (2020)

Cronert and Minner (2021)
Carvalho et al. (2022)

Schwarze and Stein (2022)

General

=

=

J 9 « I

Enumer.

=

=

Type of NE

Select PNE NE Approx Limitations

7

=

=
=
=

=

=

Most efficient, selectio
existence, enumeratior

No (practical) algorithm
Convex payoffs
Problem-specific (unimodular)
Bilinear payoffs

NO selection, expensive, existence?

No selection/enumeration,
ex|stence?

Expensive Branch-and-Prune

46



ack of

Glven an |

a general-purpose methodology to compute and mostly select equilibria

Our Goal

PG, compute the Nash equilibrium maximizing a functionf(xl, o X

47



High-Level Idea

1 Initialization F={x:xe|[|[PxeL) @:={0<1)
2 Optimization X =arg max {f(x,2):(x,2) € X, (x,2) € D]

X ,.... X7
3 Separation ¥ = argmax{u'(x’, ¥ : A'x' < b, x' € Z™)

X

f there is a player i so that u!'(#, 7% > u'(x, X7

Then, ® = d U { ', x7) < u'(x,x7" } and goto = 2

Else:

43



Why does it work

An inequality is an equilibrium inequality /7 /t is valid for 5,
l.e., the set of Nash equilibria

ui()?i,x_i) < ui(xi,x_i) Vit e O *suboptimal @lvana

Theorem (D. and Scatamacchia, 2022)

o Cut(@hzT) <ul(at, o) )
P = conv({(x,Z) <N via e BR,EY), i=1,...0n }

(1) P°is a polyhedron
2) A(x,z) € P¢: x € Z™

3P =¢&

49



Why does it work ?



Why does it work
W' x7H) <u'(xhLxTh) Ve
Let’s generalize:

Assume each player i solves:

fax S x) Nash Equilibria XeI" Vi=1,...,n
X
. . (<l —1 < l l —1 ~1 ] V-zl...
st Aeq : FiGE x™) < fid,x) VE eI Vi=1,..n

f' concave in x'

In the IPG case, “polyhedral” uncertainty on the convex-hull of the integer solutions ofeach player

ol



“The Trouble with the Second Quantifier”

u'(x, x ) <u'(xhL,x™) Vite !
In the IPG case, “polyhedral” uncertainty wrt the integer convex-hull of each player

The “uncertainty” is the

of the other
\ players

i
Xy

o2



The Trouble with the Second Quantifier

W' x7H) <u'(xhLxTh) Ve

In the IPG case, “polyhedral” uncertainty on the integer convex-hull of each player

Alternative Proof:

® binary problems with binary uncertainty ({0, 1}" intersected with polyhedron) are ¥5-hard

[CS20]

@Marc
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Why does it work

Assume each player 1 solves:

max f'(x',x7") Generalized
x ’ Nash Equilibria

s.t. x'e '(x7 :

f' concave in x°

' parametrized in x™

Currently working on it... but this looks like...

Decision-dependent Uncertainty?

00



Applications

Applications Baselines Select Enumer. Improvement

Packing, Assortment

o . (2021, 2022 A
Optimization Carvalho et al. (2021, 2022) N.A

Knapsack Game

Chen and Roughgarden
(2006), Anshelevich, et al. v NWAY
(2008), Nisan et al. (2008)

Network Formation Network design, the Internet,
Games cloud infrastructure

Retail, cloud service —

Facility Location Games S Cronert and Minner (2021) v >50x
orovisioning



Knapsack Game (KPG)

As for Wizard and Fairy, each player solves a binary Knapsack problem
With some interaction terms in the objective

max{i '+ Z ZC,EJ o le’x’<blx E{Ol}m}
j=1 J=

k=1,k#i j=1

o/



Knapsack Game (KPG)

A few facts:

e NoO successful attempts to enumerate or
select equilibria in KPGs with n > 2 and
m > 4 (Cronert and Minner (2021))

e Carvalho et al. (2021, 2022) only compute
an MNE with at mostn =3, m < 40

e No results on the complexity of the KPG,
nor its PoS/PoA

We select PNEs withn > 2, m > 50
We provide “packing” eqguilibrium inequalities

We prove it Is Zg—complete to determine if a

PNE exists + the PoS/PoA are arbitrarily bad

58



Knapsack Game (KPG)

—quilibrium inegualities may also capture specific structures or constraint types.

> Payoff Inequalities

A fact N a packing problem, often the all-zeros strategy
s feasible with objective 0

A consequence  Let &; be a subset of I's opponents. If 4&’; so that

p; + Z C,;j <0,
kes’
then, x]l + Z xjk < \cS)]l:\ IS an equilibi

kecS’J’-

59



Knapsack Game

1.05
1.04
>
-
e
(0]
afd
n 102
(T
o
()
O
=
o
1.07

— PoS Time (s) o Time TIst (s)
1600.00
1400.32
1200.00
800.00
66613
548
475.49
34236 400.00
63.35 89.35 |1 D22
0.190.07 2.350.45 18903 3 mm 0104 e -
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Network Formation Game

A few facts:

e No algorithms to select equilibria in
arbitrary NFGs

e Several bounds on PoS/PoA in some
specific instances

e \We consider the weighted version with
n=23

ol



Network Formation Game

— PoS Time (s) Time 1st (s)
1.07
643.52

1.06 \
>
-
re)
> 354.43
N 104 |
Y
o
Q
L
p -
o

1.03

37.8]
0.04 L.96
50-100 150-200 250-300 350-400 450-500

Number of nodes

/700.00

525.00

350.00

175.00

0.00

Average Time
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Facility Location and Desigh Game

B ERO Regrets

n =72, Small

n =2, Big

n =3, Small

n = 3, Big

“Only PNEs

-4.42 seconds

o4

Cronert and Minner (2020)

*Also MNEs, existence?

.92 secondss

as

283.32 seconds

96.00 seconds

Average Time (S)
(Bar-lengths are in log-scale)

20,969.56 seconds

36,9/8.14 secondls
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Rationality

Attribute 2

-

-

Attribute 1

Thanks to Claudio Sole* 64



Rationality

Attribute 2

-

-

-

Attribute 1

Thanks to Claudio Sole* 65



Rationality

Attribute 2

-

-

Attribute 1

Thanks to Claudio Sole* 66
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