Integer Programming Games

Do You Really Need Them?

Gabriele Dragotto

13th Day on Computational Game Theory
June 15-16, 2023

Rosario Scatamacchia Politecnico di Torino

Andrea Lodi Cornell and Cornell Tech

Margarida Carvalho Universitè de Montréal

Sriram Sankaranarayanan IIM Ahmedabad

Network Formation

There are *n* players optimizing simultaneously the shortest path on a network, and want to share the setup costs

Choices of other players

$$\min_{x^i} \{ u^i(\underline{x^i}; \underline{x^{-i}}) : \underline{x^i} \in \mathcal{X}^i \}$$

Choices of player i

How do we algorithmically compute the best stable outcome?

Network Congestion

A regulator wants to intervene in the game

Nash equilibria as proxy of rational behavior "Economists as Engineers" (Roth, 2002)

$$\max_{x^1} \quad 6x_1^1 + x_2^1$$
s.t.
$$3x_1^1 + 2x_2^1 \le 4$$

$$x^1 \in \{0, 1\}^2$$

Their "profits" interact

$$\max_{x_1} 6x_1^1 + x_2^1 - 4x_1^1x_1^2 + 6x_2^1x_2^1$$

s.t.
$$3x_1^1 + 2x_2^1 \le 4$$

$$x^1 \in \{0, 1\}^2$$

$$\max_{x^2} 4x_1^2 + 2x_2^2 - x_1^2 x_1^1 - x_2^2 x_2^1$$

s.t.
$$2x_1^2 + 3x_2^2 \le 4$$

 $x^2 \in \{0, 1\}^2$

And it can get more complex...

And it get more complex...

Facility Location and Design Game

Cronert and Minner, 2021 (Operations Research)

Simultaneous game among "bilevel" players

Carvalho, **D.** et al, 2023 (Management Science)

Cybersecurity

D. et al, 2023 (Ericsson Inc, - Patent pending)

Decision-making is rarely an individual task

Self-driven interactions with other decision-makers

Decision-making is rarely an individual task

Self-driven interactions with other decision-makers

deciding by solving complex optimization problems

The Toolkit: Integer Programming Games

An Integer Programming Game (IPG) is a *simultaneous one-shot (static)* game among n players where each player i=1,...,n solves

$$\min_{x^i} \{ u^i(x^i; x^{-i}) : x^i \in \mathcal{X}^i \}$$

$$\mathcal{X}^i := \{ A^i x^i \le b^i, \quad x^i \in \mathbb{Z}^{\alpha^i} \times \mathbb{R}^{\beta^i} \}$$

There is common knowledge of rationality, i.e., each player is rational and there is complete information

Nash equilibria

 $\bar{x} = (\bar{x}^1, ..., \bar{x}^n)$ is a Pure Nash Equilibrium (PNE) if, for any player i,

$$u^i(\bar{x}^i, \bar{x}^{-i}) \le u^i(\hat{x}^i, \bar{x}^{-i}) \quad \forall \hat{x}^i \in \mathcal{X}^i$$

PNEs and MNEs (Carvalho et. al, 2018)

- 1. Deciding if an IPG has a PNE is Σ_2^p -complete
- 2. Deciding if an IPG has a MNE is Σ_2^p -complete
- 3. If \mathcal{X}^i is finite for any player i, there exists an MNE

Knapsack Game (D. and Scatamacchia, 2023)

1. Deciding if a Knapsack Game has a PNE is Σ^p_{γ} -complete

An Algorithm

Without assuming any specific structure of the game

- Compute PoA/PoS?
- •Select (optimize over) a pure equilibrium?
- Determine if one exists?

The goal? Zero Regrets

Flexible
Modeling

Equilibria Computation

Equilibria Enumeration Equilibria Selection

Zero Regrets

Given an instance, compute a Nash equilibrium minimizing a function $f(x^1, ..., x^n)$

Zero Regrets

Given an instance, compute a Nash equilibrium minimizing a function $f(x^1, ..., x^n)$

Practical assumptions

We can tractably optimize f over $\prod_i \mathcal{X}^i$

We can **linearize** u^i in x^i

High-level idea

1 Initialization

$$\mathcal{K} = \{(x, z) : x \in \prod_{i} \mathcal{X}^{i}, (x, z) \in \mathcal{L}\} \qquad \Phi := \{0 \le 1\}$$

2 Optimization

$$\bar{x} = \arg\min_{x^1, \dots, x^n, z} \{ f(x, z) : (x, z) \in \mathcal{K}, (x, z) \in \Phi \}$$

3 Separation

$$\begin{split} \tilde{x}^i &= \arg\min_{x^i} \{u^i(x^i,\bar{x}^{-i}): x^i \in \mathcal{X}^i\} \\ \text{If there is a player } i \text{ such that } \quad u^i(\tilde{x}^i,\bar{x}^{-i}) \leq u^i(\bar{x}^i,\bar{x}^{-i}) \\ \Phi &= \Phi \cup \{\; u^i(\tilde{x}^i,x^{-i}) \geq u^i(x^i,x^{-i}) \;\} \end{split}$$

Else: \bar{x} is the PNE maximizing f

Why does it work?

An inequality is an equilibrium inequality if it is valid for the set of Nash equilibria

$$u^i(\tilde{x}^i, x^{-i}) \ge u^i(x^i, x^{-i}) \quad \forall \tilde{x}^i \in \mathcal{X}^i$$

Theorem (D. and Scatamacchia, 2022)

$$P^{e} := \operatorname{conv}\left\{\left\{(x, z) \in \mathcal{K}: \begin{array}{l} u^{i}(\tilde{x}^{i}, x^{-i}) \ge u^{i}(x^{i}, x^{-i}) \\ \forall \tilde{x}: \tilde{x}^{i} \in \mathcal{BR}(i, \tilde{x}^{-i}), i = 1, \dots, n \end{array}\right\}\right\}$$

- (1) P^e is a polyhedron
- (2) P^e does not contain feasible "profiles" in its interior
- (3) The extreme points of P^e are pure Nash equilibria

Weighted Network Formation

There are n players optimizing simultaneously the shortest path on a graph G=(V,E) so that:

- The player i needs to go from s_i to t_i
- $x_{ie} = 1$ if player i selects the edge $e \in E$
- \mathcal{X}_i are linear flow constraints for the path $s_i o t_i$
- The player i has a weight w_i
- Players share the cost c_e of building e

Weighted Network Formation

$$\min_{x^i} \{ \sum_{e \in E} \frac{w^i c_e x_e^i}{\sum_{k=1}^n w^k x_e^k} : x^i \in \mathcal{X}^i \}.$$

A few remarks

- No algorithms to select equilibria in arbitrary NFGs
- Several bounds on PoS/PoA in some specific instances
- We consider the weighted version with n=3

Weighted Network Formation

Knapsack Games

Summing up

Summing up

Model complex and hierarchical structure of interactions among agents

Deploy complex models, compute their equilibria, and prescribe effective regulatory interventions

The Zero Regrets Algorithm

INFORMS Journal on Computing - 2023 arXiv2111.06382

Integer Programming Games: A Gentle Computational Overview

INFORMS 2023 TutORial in O.R. - 2023 ar iv 2303.11188

The Cut-and-Play Algorithm arxiv 2111.05726

Knapsack Game (KPG)

As for Wizard and Fairy, each player solves a binary Knapsack problem with some **interaction terms** in the objective

$$\max_{x^i} \left\{ \sum_{j=1}^m p^i_j x^i_j + \sum_{k=1, k \neq i}^n \sum_{j=1}^m C^i_{k,j} x^i_j x^k_j : \sum_{j=1}^m w^i_j x^i_j \le b^i, \mathbf{x}^i \in \{0,1\}^m \right\}$$

Knapsack Game (KPG)

A few facts:

- No successful attempts to enumerate or select equilibria in KPGs with n>2 and m>4 (Cronert and Minner (2021))
- Carvalho et al. (2021, 2022) only compute an MNE with at most $n=3, m \leq 40$
- No results on the complexity of the KPG, nor its PoS/PoA

We select PNEs with n > 2, m > 50We provide "packing" equilibrium inequalities

We prove it is Σ_2^p -complete to determine if a PNE exists + the PoS/PoA are arbitrarily bad

Knapsack Game (KPG)

Equilibrium inequalities may also capture specific structures or constraint types.

Strategic Payoff Inequalities

A fact In a packing problem, often the all-zeros strategy

is feasible with objective $\boldsymbol{0}$

A consequence Let \mathcal{S}_i be a subset of i's opponents. If $\exists \mathcal{S}_i$ so that

$$p_j^i + \sum_{k \in \mathcal{S}_j^i} C_{k,j}^i < 0,$$

then, $x_j^i + \sum_{k \in \mathcal{S}_j^i} x_j^k \le |\mathcal{S}_j^i|$ is an **equilibrium inequality**.

Knapsack Game

Facility Location and Design Game

Aboolian R, Berman O, Krass D (2007) Competitive facility location and design problem. European Journal of Operational Research 182(1):40-62

Anderson E, Chen B, Shao L (2017) Supplier Competition with Option Contracts for Discrete Blocks of Capacity.

Operations Research 65(4):952-967

Anshelevich E, Dasgupta A, Kleinberg J, Tardos E, Wexler T, Roughgarden T (2008) The Price of Stability for Network Design with Fair Cost Allocation. **SIAM Journal on Computing** 38(4):1602-1623

Anshelevich E, Dasgupta A, Tardos E, Wexler T (2003) Near-optimal network design with selfish agents. **Proceedings of the thirty-fifth ACM symposium on Theory of computing - STOC '03, 511**

Bikhchandani S, Mamer JW (1997) Competitive Equilibrium in an Exchange Economy with Indivisibilities. **Journal of Economic Theory** 74(2):385-413

Carvalho M, Lodi A, Pedroso J (2022) Computing equilibria for integer programming games. European Journal of Operational Research

Carvalho M, Lodi A, Pedroso JP, Viana A (2017) Nash equilibria in the two-player kidney exchange game. **Mathematical Programming** 161(1-2):389–417

Chen HL, Roughgarden T (2006) Network design with weighted players. Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms and architectures - SPAA '06, 29

Cronert T, Minner S (2020) Equilibrium identification and selection in integer programming games. **SSRN pre- print**

David Fuller J, C, elebi E (2017) Alternative models for markets with nonconvexities. **European Journal of Operational Research** 261(2):436-449,

Facchinei F, Pang JS, eds. (2004) Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research and Financial Engineering

Federgruen A, Hu M (2015) Multi-Product Price and Assortment Competition. Operations Research 63(3):572-584

Gabriel SA, Siddiqui SA, Conejo AJ, Ruiz C (2013) Solving Discretely-Constrained Nash-Cournot Games with an Application to Power Markets. **Networks and Spatial Economics** 13(3):307-326,

Koeppe M, Ryan CT, Queyranne M (2011) Rational Generating Functions and Integer Programming Games. **Operations Research** 59(6):1445–1460

Roughgarden T, Tardos E (2004) Bounding the inefficiency of equilibria in nonatomic congestion games. Games and Economic Behavior 47(2):389-403

Schwarze S, Stein O (2022) A branch-and-prune algorithm for discrete Nash equilibrium problems. **Optimization Online Preprint** *ID* 2022-03-8836:27,