Differentiable Cutting-Plane Layers

For Mixed-Integer Linear Optimization

Princeton University March 12-15 2024

Gabriele Dragotto CISS 2024

Our team

Stefan Clarke ORFE, Princeton

Jaime Fernandez Fisac ECE, Princeton

Bartolomeo Stellato ORFE, Princeton

Mixed-Integer Optimization

Control

Learning

Discrete decisions are ubiquitous

Supply Chain and Transportation

Vehicle routing Assortment decisions

On-a Unit

As new data arrives, we need to solve these problems in real-time

Energy

Robotics

On-and-off switches

Unit commitment

Hybrid dynamics

Mixed-integer solvers are not made for this!

m Sek

Despite tremendous progress, solvers are extremely efficient at **solving one instance**

Parametric mixed-integer problems

As new data arrives, we need to solve these problems in real-time

Build a computational architecture that exploits the *repetitive nature* of this family

Our goal

Cutting-plane algorithms

Cutting plane algorithms

Gilmore and Gomory (1961) and (1963), Kelley (1960)

continuous relaxation

minimize subject to

$$c(\theta)^{\top} x$$
$$A(\theta) x \le b(\theta)$$
$$G x \le h$$

They are valid $X(\theta) \subseteq \{x \mid g_i^T x \le h_i\}$

They cut off some \bar{x}

 $g_i^T \bar{x} > h_i$

Cutting is a complex business

There are several structural decisions involved in cutting

How to select cuts?

When to restart?

Cornuejols (2012), Contardo, Lodi, Tramontani (2022), Dey and Molinaro (2018)

Learning to cut

Cut selection

Tang, Agrawal, Faenza (2020), Paulus, Zarpellon, Krause, Charlin, Maddison (2022), Deza and Khalil (2023)

Chetelat and Lodi (2023)

Our differentiable architecture

11

We deploy R iterations of a cutting plane algorithm

12

An iteration is policy + relaxation

The RNN provides the "cut parameters"

Cutting plane layers (CPLs)

 $g_i^T x \le h_i$

We train with SGD

Stochastic gradient descent (SGD)

$$\rho^{t+1} = \rho^t - \gamma \nabla \hat{L}(\rho^t)$$

negative Loss improvement

Backpropagate through CPL

Agrawal, Barratt, Boyd, Busseti, Moursi (2019), Agrawal, Amos, Barratt, Boyd, Diamond, and Kolter (2019)

Cuts representability

Disjunctive cuts

We can represent any disjunctive cuts, even with multipleterms disjunctions

Gomory Mixed-integer

Undominated **Generalized Gomory** Mixed-integer rounding

Lift-and-project

Any undominated subadditive cut from Chetelat and Lodi (2023)

Examples

Fischetti, Lodi and Tramontani infamous example

Learning better cuts

(3 rounds, 2 cuts each)

	training			validation			test		
	gap	infeasibility	violation	gap	infeasibility	violation	gap	infeasibility	violation
cplayers	1.09	0.01	0.50	0.70	0.01	0.49	0.00	0.00	0.50
SNC	3.26	0.01	0.05	2.59	0.03	0.49	1.17	0.02	0.50

(2 rounds, 5 cuts each)

	training			validation			test		
	gap	infeasibility	violation	gap	infeasibility	violation	gap	infeasibility	violation
cplayers	0.38	0.17	0.30	2.28	0.17	0.25	5.47	0.14	0.13
SNC	18.10	0.05	0.16	21.60	0.05	0.19	21.65	0.05	0.08

Violation might be misleading

Matching

Hybrid control

Summing up

Differentiable

Mixed-integer optir differentiable

We can learn the underlying properties of **parametric families** of problems

Optimization

We can build **efficient** algorithms to solve the parametric families

Mixed-integer optimization algorithms are

Differentiable Cutting Plane Layers for Mixed-Integer Optimization arXiv 2311.03350

Mixed-Integer Control Optimization

Learning

