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Discrete decisions are ubiquitous
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Supply Chain and Energy Robotics
Transportation
Vehicle routing On-and-off switches Hybrid dynamics
Assortment decisions Unit commitment

AS new data arrives, we need to solve these problems in real-time



Mixed-integer solvers are not made for this!

Despite tremendous progress,
solvers are extremely efficient at
solving one instance
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Parametric mixed-integer problems

As nhew data arrives, we need to solve these problems in real-time

Parameters Decisions

\

minimize c¢(@)'
subject to  A(f)z < b(0), Feasible region
x;, €4, Viel X(H)

Our.adl Builld a computational architecture that
i exploits the repetitive nature of this family




Cutting-plane algorithms



Cutting plane algorithms

o o X (0)

Gilmore and Gomory (1961) and (1963%), Kelley (1960)

continuous relaxation

minimize  ¢(0)'x
subjectto A(0)x < b(0)
Gx < h

They are valid
X(0) C{x|g; © < hs}

They cut off some x
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Cutting is a complex business

There are several structural decisions involved In cutting

How to select cuts? How many to store?
When to restart? Which variable?

Cornuejols (2012), Contardo, Lodi, Tramontani (2022), Dey and Molinaro (2018)



Learning to cut

Cut selection

Tang, Agrawal, Faenza (2020), Paulus, Zarpellon, Krause,
Charlin, Maddison (2022), Deza and Khalil (2023)
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= well-defined learning task

<7 less flexibility

Softmax

Continuous cut

generation

Chetelat and Lodi (2023)

Round 1 Round2 |
GMI cuts GMI cuts

= more flexibility
" hard learning task
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Our differentiable architecture



We deploy R iterations of a cutting plane algorithm
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An iteration is policy + relaxation
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The RNN provides the “cut parameters”
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Cut parameters
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Cutting plane layers (CPLs)

Previous solution cut-generating program

€T maximize Violation

subject to

Cut parameters
Valid inequality

normahzahon
disjunction

nle<normtax>n+1
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We train with SGD

negative

pqlicy Loss improvement
weignts \ f—1 /

r=0
Stochastic gradient descent (SGD) Backpropagate through CPL
t‘l‘l - t . T t rawal, Barra O usseti, Moursi (2019), Agrawal,
IO e 10 W/VL(IO ) AgAch,s,BBarr;J’tc:t,BBé/S{j,BDiamtonl\c/lll, and Kolger (25919)

16



Cuts representability

i : We can represent any disjunctive cuts, even with multiple-
Disjunctive cuts . . :
terms disjunctions
Gomory Mixed-integer . I .

Undominated ANy undominated subadditive cut from
Generalized Gomory Chetelat and Lodi (2023)
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Examples



Fischetti, Lodi and Tramontani infamous example
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Violation
might be

Learning better cuts better

optimality

gap misleading

Matching
(3 rounds, 2 cuts each)
training validation test
gap Infeasibility violation gap infeasibility violation gap infeasibility violation
cplayers 1.09 0.01 0.50 0.70 0.01 0.49 0.00 0.00 0.50
SNC 3.26 0.01 0.05 2.59 0.03 0.49 1.17 0.02 0.50

Hybrid control
(2 rounds, 5 cuts each)

training validation test
gap Infeasibility violation gap infeasibility violation gap infeasibility violation
cplayers 0.38 0.17 0.30 2.28 0.17 0.25 547 0.14 0.13
SNC 18.10 0.05 0.16 21.60 0.05 0.19 21.65 0.05 0.08
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Summing up

Differentiable

Optimization

Mixed-integer optimization algorithms are
differentiable

We can learn the underlying
oroperties of parametric families of
oroplems

We can build efficient algorithms to solve the
oarametric families
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