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WARNING

A

an overview of several works.
Mit some technical details




Mixed Integer
Programming (MIP)

- Modeling and interpretability of

oractical problems
- Powerful algorithmic arsenal Algorithmic CEINE

Theory (AGT)

- Complex modeling capabilities, especially
when multiple agents interact
- Since more recent, way less algorithmic
B tools than MIP

Applications

- Provides ideas for methodological
contributions (e.qg., resource allocation

oroblems)



' .he context
'n MIP and AGT

The Barolo Chapel by Sol LeWitt and David Tremlett




MIP In three slides

We are given a MIP in the form max{c'x:x € &}
g ={Ax2>2b,x>20,x,. € Z Viel}

Where I encapsulates the integer requirements on some variables, and A € R™" is a matrix
without any special structure.

Starting from the linear relaxation of &:
S8 ={Ax>b,x>0,L <x, < U Viel)

We'd like to get the convex-hull of &:
€ = conv(¥%)

which is often (computationally) hard to retrieve.
Then, we try to obtain a polyhedron whose

optimal solution — given ¢ — is a mixed-integer
Feasible point.




MIP In three slides

Basic components of modern M/P technology:
Branch and Cut and and boig, 1960 - Padberg and Rinaldi, 1991)

- Branching: “divide and conquer” for integer domains.

NODE SELECTION VAR. SELECTION

- Cutting: “pruning” of integer-free areas of e

GENERAL-PURPOSE PROBLEM-SPECIFIC

Heuristics and Presolving chterberg, 2009)

- Primal Heuristics: find a solution quickly
ROUNDING DIVING

IMPROVING

- Presolving: finds logical conflicts, and simplify.
(See Constraint Programming)

A good LP solver ®




Heuristics




actical applications requirements challenge the state of the art

For Instance...



Sometimes & is not defined by linear inequalities.



Sometimes & is not convex




MIP

Sometimes the M/Ps are (in practice) hard to solve!

From MIPLIB 201/



Leader;

Sometimes we cannot truthfully multi-agent interactions
INn a straightforward way. For instance... GAMES



Interactions of MIP and Game-Theory can
(hopefully) expand the domain of what we
can do with OR (e.g., resource allocation)!

Or at least I'll try to convince you about the sanity of this claim.

A 60 seconds pitch.






10,1}"

ng its products portfolio




max, d'x +yT0%x

Y
Ey</f
y € {0,1}"
lio E.g., another retailer

oblems to multi-agent settings

orithms and solutions?




ample #2

ly the appealing example)



Consider a Bagel Shop



| usually make a case fo
Bagels...



Coronavirus

EU threatens to block Covid vaccine
exports amid AstraZeneca shortfall

Coronavirus Coronavirus

Macron calls for Covid vaccine exports EU could block millions of Covid vaccine
from EU to be controlled doses from entering UK

How EU's floundering vaccine effort hit
a fresh crisis with exports row

the



Consider a Drug



o die o4

Fpizer

produces and sells its Drug in a market in order to profit



9
@ Simultaneous

Nash Game

And competes with Giovanni & Giovanni
Hence, they play a simultaneous game with the Drug
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Canada taxes their drugs
And regulates exports/imports of the drug

Simultaneous

e diodioq
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Seqguential
Stackelberg Game

Simultaneous
Nash Game

Canada regulates the market
Playing a sequential game with the Drug companies



Canada

Simultaneous
Game

maorena

ZastraAneca@

o gl dilled

Canada competes with the UK
The countries play another simultaneous game among themselves



We call this Nash Game Among Stackelberg Leaders (NASP)

What If....

Drug companies are instead energy producers,
Insurance companies, ...

When Nash Meets Stackelberg (2020) - Submitted



My work generally focus on:

omplex Providing methodological

s with AGT contributions

atical frameworks model such - Creating new algorithms to solve games
and are widely employed for real- - Exploit the algorithmic arsenal of MIP
ations.

|
deed games are useful!

The main work of this talk is here!
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A polyhedral version of John Nash




Background

_ A game (for the scope of this presentation) is made of n players, where
any playeri=1,2,...,n solves the optimization problem:

(Nash, 1950, 1951)

min {(c)'x'+ x7H)'C'x': x' € I}
x'eR"

Where the operator ( - )i s meant for player i and (- )_i every player but i,
eg, x L=l T XX
It the objective function (f’) and & are convex, then we can solve the
oroblem reasonably fast.

@ bad news: this is not often the case and these games are Zl% — hard.

We call these games “Reciprocally Bilinear Games” (RBGs)



We have a simultaneous non-cooperative game where n players
are solving an optimization problem and interacting through
their objective functions.

-INTEGER PROGRAMMING GAMES (IPGs):
Each players solves an integer program (Z; — hard).

-GAMES AMONG STACKELBERG LEADERS (NASPs):
Each player is a bilevel leader with some followers (2> — hard).

N

More in general, your favorite optimization problem where each I
IS a second-order cone, mixed-integer set, ...



Background

x'eR"

(Nash, 1950, 1951)

i is a pure strategy if ¥ € *

o' is a Mixed-strategy if o = ﬂ?-)c]? for some x]’ cq"

with Z /1]." —
J

J

s )= (ST > 0)
e.qg., strategies played with positive

orobability in o'

X' is a best-response if given X, then

¥ =arg min {(c)'x'+ (xH)'Cx' : x' € L'}
x'eR"




Background

It won a few Nobel prizes through the last decades. It's one of the leading solution
concept for games.

(Nash, 1950, 1951)

PLAIN ENGLISH:
No player can unilaterally deviate from the Nash equilibrium without

worsening its payoff

PLAIN MATH:
The strategy 6 = (61, ..., ") is a Mixed-Nash Equilibrium (MNE) iff

fi(g, 67 < fi6', 67  Vole X foranyi

Deviating increases the payoff!

_ The strategies in supp(o) are always best-responses!






There I1s a small Issue...



If s the i-th player’s feasible region, then the set of all mixed-strategies
is cl conv(Z)

ISSUES

Finding the description of cl conv(Z") is non-trivial, both from a
theoretical and computational standpoint

e When non-convexities arise In SX", an explicit description is
untractable. E.g., in /PGs cl conv(&”i) IS prohibitive



The Linear (or whatever kind of) relaxation gives
you an valid bound on the original optimization
oroplem

A relaxation of the game almost always does not
tell you anything about the existence (or not) of
an MNE for the original game!







We are In C



The ancient land of Oracles...



Rt Eoumnmun L

~ AIND THE CUT AND PLAY ALGORITHM

”~

The Equilibrium O

ra!()ﬂ) - Working Paper



Known facts

x'eR"

If X is the i-th player’s feasible region, then the set of all mixed strategies
is cl conv(ZY)

CONVEX GAMES

owever, given cl conv(Z") for any i (or an approximation), one can

solve an LCP to find an equilibrium (In MIP this would be a relaxation)

Here, we focus on a relaxation of cl conv(Z?)



Known facts

For any player i

max (¢)'x'+ (x7) ' Clx!

xt Polyhedral (convex)
S.t. relaxation of cl conv(Z")

C‘l Clx_l AIT
bl —Al 0 min 0
g= | : M = 5 6=(5",...,6"),y=0',....y") )
c" C'x™" AT S.t. z=Mo+q
z,06 >0

93 These are just KKT!
Remark: the objectives are preserved.



What is a good Approximatio n feasible?

How does one decide how to build a sequence
approximation & = {Z!, ..., X"}?

slaxed game, is 6 also a
nal (exact) game?

e support?




Does it recall anything you know?



SIAM REVIEW (©)1991 Society for Industrial and Applied Mathematics
Vol. 33, No. 1, pp. 60-100, March 1991 004

A BRANCH-AND-CUT ALGORITHM
FOR THE RESOLUTION OF LARGE-SCALE
SYMMETRIC TRAVELING SALESMAN PROBLEMS *

MANFRED PADBERGt Anp GIOVANNI RINALDI}

Abstract. An algorithm is described for solving large-scale instances of the Symmetric
Traveling Salesman Problem (STSP) to optimality. The core of the algorithm is a “polyhedral”

cutting-plane procedure that exploits a subset of the system of linear inequalities defining the convex
hull of the incidence vectors of the hamiltonian cycles of a complete graph. The cuts are generated
by several identification procedures that have been described in a companion paper. Whenever
the cutting-plane procedure does not terminate with an optimal solution the algorithm uses a tree-
search strategy that, as opposed to branch-and-bound, keeps on producing cuts after branching. The
algorithm has been implemented in FORTRAN. Two different linear programming (LP) packages
have been used as the LP solver. The implementation of the algorithm and the interface with
one of the LP solvers is described in sufficient detail to permit the replication of our experiments.
Computational results are reported with up to 42 STSPs with sizes ranging from 48 to 2,392 nodes.
Most of the medium-sized test problems are taken from the literature; all others are large-scale
real-world problems. All of the instances considered in this study were solved to optimality by the
algorithm in “reasonable” computation times.

A RELAXATION A SEPARATION ROUTINE SPECIAL CUTS

HEURISTICS



The EO

_ The “Equilibrium Oracle”

e \Works with any RBG

e Given a point 6 and a set X, the oracle returns a
if 6 & cl conv(), or an extended proof of inclusion
(V, o) otherwise (again, w.r.t cl conv(X)).

e With (V, a) one can always rewrite 6 as a convex combination of
elements of V with coefficients

e Despite it may have strong theoretical guarantees, it would
impractically exploit the Ellipsoid’s method.



The EO

_ A 7 -polyhedral Equilibrium Oracle

e Works with any RBGs where ¢ conv( ") is polyhedral

e Provides an extended proof (V. alpha, K. [7) where R are rays

e Only requires a blackbox (linear) solver to optimize over X

e It creates an inner 7 -polyhedral representation of cl conv(X)

e We offer an intuitive game-theoretical interpretation of this 77
-polyhedral approximation. Namely, what rays and vertices are In
a game



The EO

A practical Equilibrium Oracle

e We provide a new family of (supporting) valid inegualities for the
player's mixed strategy set. This result also holds whenever

cl conv(X) is not polyhedral.

¢ One may use the Oracle to separate points from polyhedral
approximations of non-polyhedral closures.

¢ One may extend this object to handle other well-behaved convex
sets (e.g., second order cones)



The EO

The Cut and Play algorithm

e We tightly integrate the Oracle with an series of increasingly
accurate relaxation

e We agnostically sketch an high level procedure. The only
problem-specific steps can be easily tailored according to one’s
application

e \We iteratively improve the relaxations via cutting planes. One
can:

e Build branch and bound tree by the addition of (invalid)
Inequalities to some leaves.

* Integrate existing technology (e.g., a lot of A~ of MIP)

e We provide comprehensive computational results for NASPs and
Random Knapsack IPGs



Polyhedral Relaxation A
for all players 1

EquilibriumLCP(G, w) Refine (multiple) A}, ;;

EquilibriumOracle (o, X, f*, ™3 ¢)
es Y Y Y Y

Add 7zt < 7°
for any 7:0° infeasible

‘A One can include here any known
Families of MIP cutting planes!







The Oracle

_ We are given an MNE o for an approximation, and we want to know if
& € cl conv(Z")

Compute the best response i < aIg ;’g} f(x,67) Vi=V,U ix}

Is the payoff of 6 better than the above's one?
f fi(0)! = f'(x!,67")
VALUE CUT f'(x',67%) > fi(i&, 67

Else

Call the Equilibrium Oracle’s separation routine



The Oracle

_ Call the Equilibrium Oracle’s separation routine

We can check if 6' can be retrieved from a convex combinations of points

in V, and rays in /. with an LP. Namely, if it is contained in the approximation v/

max (") 7w —

TT, T

sy | wewecRsHpoUAL
vjﬂ—ﬂOSO ‘v’vjE V.
roﬂ- <0 V?‘j = Ri A-la Balas and Perregaard
n,m, free

UNBOUNDED DUAL: separating hyperplane 7l x' < 99 normalized
with |1y, + [[x]], <1



The Oracle

_ We optimize & over the feasible region g7

PY(x) = max 'xt s xte 3! v = arg max{P'(n)}
Xi *

If UNBOUNDED we have an extreme (dua)ray r:=n K = R U {r]
(A lot of technicalities omitted)

If BOUNDED
fz'v<za'®: THECUTISY x'<u
Otherwise, we have a new vertex. V.=V, U (v}

Repeat until we hit an iteration limit



The Oracle

fz'9<z'x¥ : THECUTISy x'<v

Yes and proof Cut



Cut And Play

_ e Each player solves a Linear Integer Program with bilinear utilities

e The first approximation is the linear relaxation

e \We replace the branching routine with a few rounds of cuts
for each player

Mainly KPCover for the KP. Aggressivity levels: NoThanks, KeepltCool,

e \We solve the LCP via a MIP or PATH






Algo

m=3 n=40
m-SGM
CnP-MIP
CnP-MIP
CnP-MIP
CnP-MIP
CnP-PATH
CnP-PATH
CnP-PATH
CnP-PATH
m=2 n=80
m-SGM
CnP-MIP
CnP-MIP
CnP-MIP
CnP-MIP
CnP-PATH
CnP-PATH
CnP-PATH
CnP-PATH
m=2 n=100
m-SGM
CnP-MIP
CnP-MIP
CnP-MIP
CnP-MIP SW
CnP-PATH F
CnP-PATH F
CnP-PATH F
CnP-PATH F

C | GeoT (s)

27.04
5.49)
3.06)
2.58)
2.54)
2.35
0.87
0.79
0.79

140.33
128.74
162.20
147.92

14.97
29.83 (11.47)
27.02 (7.27)
36.71 (10.06)
33.61 (9.04)
7.71

5.45

4.93

4.84

77.13
102.57 (36.29)
105.97 (33.07)
107.04 (30.86)
104.51 (19.97)
23.02
14.46
14.56
14.96

#F

C OO O OO OoOOoOo N

1
0
0
0
0
0
0
0
0

OO = OO0 =00 W

SW-

2339.79
2991.76
3016.22
2980.69
3012.29
2882.45
2906.33
2898.04
2916.53

2676.52
3127.96
3127.97
3124.63
3126.16
2914.36
2926.82
2936.52
2926.79

2861.20
3750.38
3454.41
3771.62
3657.60
3496.86
3488.44
3507.71
3504.65

#It* | Cuts’

28.5
15.6
21.9
25.1
24.9
14.0
21.1
22.9

6.7
7.0
8.6
8.7
8.1
6.1
7.4
7.8

\4

13.2
8.9
6.7
6.8

12.6
8.8
6.6
6.4

VC-

15.3
1.9
0.9
0.6

12.3
1.4
0.8
0.3

1.3
0.7
0.5
0.6
1.4
0.4
0.4
0.7

MIP®

0.0
4.8
14.3
17.7
0.0
3.8
13.7
16.2

0.0
1.0
4.5
4.7
0.0
1.2
3.6
4.6

Random Knapsack Games with
m players and n items

Geometric-mean results. Shift of 10 seconds

e Than previous .||terature Wildg
oeaks of T00Ox improvements
The quality of MNEs

(e.g. social welfare) improves

T we use a MIP solver to solve
| CPs

BETTER!



FASTER Compared to previous literature with peaks of
By solving the LCPs with PATH, we save roughly 90% of the computation time!

BETTER! The quality of MNEs (e.g. social welfare) . Even more if we

use a MIP solver to solve LCPs. However, in this last case the computation time
iINncreases dramatically.

The more MIP cuts we use (e.g., MIR, GMIs, Knapsack Cover) the better we do in
MIPPING . . .
terms of time and quality of solution!

This means you should start doing research in this area!
Yes, exactly you!




Open questions

e Often, one want to compute specifically a Pure Nash equilibrium.
How to tailor the algorithm to do that?

e Can we find the “optimal” (e.g., given a function in the players’ variables) MNE?

e The answer is in the next next talk! 99
/ZERQO Regrets (2021 - Working Paper with Rosario Scatamacchia
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A polyhedral version of Von Neumann




LERO

Everything | presented (and more) is currently implemented in a software called ZERO

It consists of more than 15k lines of codes:

- Command line interface

- Standardized with C++ best practises
- Models, abstracts, and solves LCPs, Stackelberg Games, Nash Games, NASPs, |IPGs, ...
- Builds like a library that can be integrated in third-party projects

- Supports explicit modeling for energy trade markets

Plan for future developments:

- A plan to scale up the project

- Integration with SCIP Optimization Suite

An Open Source Solver - Implementation of routines for zero-sum games

ZERQO: An Open Source solver for Games (202]) - Working Paper
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Algo GT (s) # GT (s) #N
NASH_ EQ ALL

Inn-S-1 6.22 49 6.56 50
Inn-S-3 4.94 49 5.12 50
Inn-RS-1 1.62 49 1.8 510,
Inn-RS-3 1.55 49 1.67 50
Out-HB 7.47 46 7.71 47
Out-DB 9.45 46 9.5 47
Inn-S-1 - 0 300.0 46
Inn-S-3 - 0 - 0
Inn-RS-1 64.82 45 75.63 510
Inn-RS-3 65.15 45 75.97 50
Out-HB 53.79 41 73.45 50
Out-DB 52.58 35 88.92 50

3
2

OO O OO kW Ww O O O O
N
Ot © OOt O OO O O O O O

1
1
1
1
1
1
0
0
0
0
0
0

-

tab:NASPS1

Table 6.1: NASPs summary results. |




Algo

m=3 n=10
m-SGM
CnP-MIP
CnP-MIP
CnP-MIP
CnP-MIP
CnP-PATH
CnP-PATH
CnP-PATH
CnP-PATH
m=2 n=20
m-SGM
CnP-MIP
CnP-MIP
CnP-MIP
CnP-MIP
CnP-PATH
CnP-PATH
CnP-PATH
CnP-PATH
m=3 n=20
m-SGM
CnP-MIP
CnP-MIP
CnP-MIP
CnP-MIP
CnP-PATH
CnP-PATH
CnP-PATH
CnP-PATH
m=2 n=40
m-SGM
CnP-MIP
CnP-MIP
CnP-MIP
CnP-MIP
CnP-PATH
CnP-PATH
CnP-PATH
CnP-PATH

GeoT (s) #F

2.11
0.47 (0.23)
0.31 (0.14)
0.20 (0.08)
0.20 (0.08)
0.02
0.02
0.03
0.03

0.01
0.96 (0.25)
0.93 (0.29)
0.75 (0.18)
0.84 (0.16)
0.05
0.04
0.03
0.03

0.20
29.74 (1.49)
27.22 (0.66)
29.61 (0.61)
28.92 (0.61)
1.04
0.08
0.07
0.06

1.26
27.87 (5.11)
25.58 (3.53)
29.72 (2.16)
(

38.53 (1.84)
0.89
0.70
0.62
0.54

CCCOoOoOocCoCcooCo CoOoOCCoCcCOoocCoc oo CcCCCoOoOOocCocooCo

CoOoCCoOooCcoc oo

SW~

1339.98
1488.96
1473.46
1476.85
1478.61
1327.47
1325.23
1361.74
1325.91

1348.56
1433.13
1434.09
1405.30
1429.73
1355.26
1355.01
1355.21
1355.00

HTt*

Cuts”

5.0
4.8
7.2
8.0
5.9
4.9
0.4
0.4




m=3 n=40
m-SGM
CnP-MIP
CnP-MIP
CnP-MIP
CnP-MIP
CnP-PATH
CnP-PATH
CnP-PATH
CnP-PATH
m=2 n=80
m-SGM
CnP-MIP
CnP-MIP
CnP-MIP
CnP-MIP
CnP-PATH
CnP-PATH
CnP-PATH
CnP-PATH
m=2 n=100
m-SGM
CnP-MIP
CnP-MIP
CnP-MIP
CnP-MIP

27.04
140.33 (5.49)
128.74 (3.06)
162.20 (2.58)
147.92 (2.54)
2.35
0.87
0.79
0.79

14.97
29.83 (11.47)
27.02 (7.27)
36.71 (10.06)
33.61 (9.04)
7.71

5.45

4.93

4.84

77.13
102.57 (36.29)
105.97 (33.07)
107.04 (30.86)
(

104.51 (19.97)

COCOCOCOoOoOCOCOoOOoO N

COOCOCOCOCO O =

2339.79
2991.76
3016.22
2980.69
3012.29
2882.45
2906.33
2898.04
2916.53

2676.52
3127.96
3127.97
3124.63
3126.16
2914.36
2926.82
2936.52
2926.79

2861.20
3750.38
3454.41
3771.62
3657.60

CnP-PATH F 23.02
CnP-PATH F 14.46
CnP-PATH F 14.56
CnP-PATH F 14.96

3496.86
3488.44
3507.71
3504.65

o= OO =00 W




