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DEDICATION
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Answer.
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That the powerful play goes on, and you may contribute a verse.”

Walt Whitman
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RÉSUMÉ

Dans de nombreux contextes de prise de décision, un agent égoïste cherche à optimiser
son bénéfice compte tenu de certaines contraintes situationnelles. Mathématiquement, la
tâche du décideur est souvent formulée comme un problème d’optimisation dont la solution
fournit une recommandation prescriptive sur la meilleure décision. Cependant, la prise de
décision est rarement une tâche individuelle : chaque décideur égoïste interagit souvent
avec d’autres décideurs ayant des intérêts similaires. Cette thèse discute et propose une
nouvelle perspective pour capturer la dynamique de la prise de décision stratégique impliquant
plusieurs agents résolvant des problèmes d’optimisation. Nous explorons les opportunités
offertes par l’interaction entre l’optimisation - en nous concentrant sur la programmation en
nombres entiers mixtes (MIP) - et la théorie algorithmique des jeux (AGT ) en les analysant à
travers le prisme d’un cadre unifié, capable d’intégrer des éléments des deux disciplines. Nous
introduisons une taxonomie pour les jeux de programmation mathématique (MPGs), des
jeux non coopératifs simultanés où le problème de décision de chaque agent est un problème
d’optimisation exprimant un ensemble hétérogène et éventuellement complexe de contraintes.
Nous développons nos contributions en considérant l’équilibre de Nash comme le principal
concept de solution et fondons notre recherche sur le principe suivant : dans les MPGs, la
plausibilité des équilibres de Nash découle de la disponibilité d’outils efficaces pour les calculer
et les sélectionner. En conséquence, nous fournissons des algorithmes originaux et des cadres
théoriques pour caractériser, calculer et sélectionner les équilibres de Nash dans les MPGs.

Tout d’abord, nous abordons le problème du calcul et de la sélection des équilibres dans les
jeux de programmation en nombres entiers (IPGs), à savoir les MPGs où chaque joueur résout
un programme paramétré en nombres entiers. En introduisant des concepts tels que l’inégalité
d’équilibre, l’oracle de séparation d’équilibre, et la fermeture d’équilibre, nous permettons à
des outils archétypiques de la programmation en nombres entiers d’acquérir un rôle dans
la théorie des jeux. Nous concevons ZERO Regrets, un algorithme de plans coupants pour
calculer et sélectionner les équilibres dans les IPGs. Nous testons l’algorithme sur un jeu
d’AGT et sur une extension multi-agents du problème du sac à dos, et nous fournissons de
nouveaux résultats théoriques et informatiques sur l’efficacité de leurs équilibres.

Ensuite, nous présentons Cut-and-Play, un algorithme permettant de calculer les équilibres
des jeux réciproquement bilinéaires (RBGs), une classe de MPGs où l’objectif de chaque
joueur est linéaire par rapport à ses variables et contient des termes bilinéaires entre ses
variables et celles de ses adversaires. L’algorithme calcule les équilibres en exploitant une
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série d’approximations du problème d’optimisation de chaque joueur et en s’appuyant sur des
méthodes de branchement et de plans coupants. Notre approche algorithmique est générale,
extensible, et elle s’intègre aux solveurs de programmation mathématique existants. En
pratique, elle surpasse les meilleurs algorithmes en termes de temps de calcul et d’efficacité
des équilibres.

Troisièmement, nous analysons une classe de MPGs parmi les leaders des jeux de Stackelberg
(c’est-à-dire des jeux séquentiels leader-followers) et leur application aux marchés de l’énergie.
Nous prouvons qu’il est Σp

2 difficile de décider si le jeu admet un équilibre, et nous introduisons
un algorithme pour calculer et sélectionner ces équilibres. De plus, nous fournissons une étude
pratique sur le marché de l’énergie chilien-argentin et offrons des perspectives de gestion
basées sur les informations fournies par les équilibres.

Enfin, nous présentons ZERO, une bibliothèque C++ modulaire et extensible pour expérimenter
avec des RBGs. ZERO fournit une boîte à outils complète d’interfaces de modélisation pour
concevoir des RBGs, et des algorithmes pour trouver leurs équilibres de Nash. Notre engage-
ment envers le code source ouvert vise à favoriser le développement futur, méthodologique et
pratique, dans le domaine des RBGs.
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ABSTRACT

In many decision-making settings, a selfish agent seeks to optimize its benefit given some
situational constraints. Mathematically, the decision-maker’s task is often formulated as an
optimization problem whose solution provides a prescriptive recommendation on the best
decision. However, decision-making is rarely an individual task: each selfish decision-maker
often interacts with other similarly self-interested decision-makers. This thesis discusses and
proposes a novel perspective to capture the dynamics of multi-agent strategic decision-making
involving multiple agents solving optimization problems. We explore the opportunities offered
by the interplay of Mathematical Optimization – specifically Mixed-Integer Programming
(MIP) – and Algorithmic Game Theory (AGT ) by analyzing them through the lenses of
a unified framework capable of integrating elements of the two disciplines. We introduce
the taxonomy of Mathematical Programming Games (MPGs), simultaneous non-cooperative
games where each agent decision problem is an optimization problem expressing a heteroge-
neous and possibly complex set of constraints. We develop our contributions considering the
Nash equilibrium as the primary solution concept and ground our research in the following
principle: in MPGs, the plausibility of Nash equilibria stems from the availability of efficient
tools to compute and select them. Accordingly, we provide original algorithms and theoretical
frameworks to characterize, compute and select Nash equilibria in MPGs.

First, we tackle the problem of computing and selecting equilibria in Integer Programming
Games (IPGs), namely MPGs where each player solves a parametrized integer program. By
devising concepts such as equilibrium inequality, equilibrium separation oracle, and equilibrium
closure, we let archetypical tools of integer programming acquire a game-theoretic role. We
design ZERO Regrets, a cutting plane algorithm for computing and selecting equilibria in
IPGs. We test the algorithm on a game from AGT and a multi-agent extension of the
knapsack problem and further provide novel theoretical and computational results on the
efficiency of equilibria.

Second, we introduce Cut-and-Play, an algorithm to compute equilibria for Reciprocally-
Bilinear Games (RBGs), a class of MPGs where each player’s objective is linear in its
variables and contains bilinear terms among the player’s variables and its opponents’ ones.
The algorithm computes equilibria by exploiting a series of approximations of each player’s
optimization problem and leveraging branching and cutting plane methods. Our algorithmic
approach is general and extensible, and it integrates with existing mathematical programming
solvers; in practice, it outperforms the state-of-the-art algorithms in both computing times
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and equilibria efficiency.

Third, we analyze a class of MPGs among the leaders of Stackelberg Games (i.e., sequential
leader-followers games) and their application in energy markets. We prove it is Σp

2-hard to
decide if the game admits an equilibrium and introduce an algorithm for computing and
selecting equilibria. Further, we provide a real-world study on the Chilean-Argentinian energy
market and deliver managerial insights based on the information equilibria provide.

Finally, we present ZERO, a modular and extensible C++ library for experimenting with
RBGs. ZERO provides a comprehensive toolkit of modeling interfaces to design RBGs, and
several algorithms to compute their Nash equilibria. Our commitment to open-source aims at
fostering methodological and practical advancements in the area of MPGs.



xi

TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS AND ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER 1 – INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 2 – BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Polyhedra, Optimization, and Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Integer Programming Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Reciprocally-Bilinear Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Stackelberg Games and Bilevel Programming . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Equilibria, Stability, and Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

CHAPTER 3 – LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

CHAPTER 4 – THE ZERO REGRETS ALGORITHM: OPTIMIZING OVER
PURE NASH EQUILIBRIA VIA INTEGER PROGRAM-
MING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Equilibrium Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 A Lifted Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



xii

4.4 The Cutting Plane Algorithm and its Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Knapsack and Network Formation Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5.1 Knapsack Game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.2 Network Formation Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Computational Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

CHAPTER 5 – THE CUT-AND-PLAY ALGORITHM: COMPUTING NASH
EQUILIBRIA VIA OUTER APPROXIMATIONS . . . . . . . . . . 38

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Related literature and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Background and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Integer Programming Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 NASPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Algorithmic Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1 The Cut-and-Play Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Implementing the ESO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.1 The V-Polyhedral ESO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Tailoring the CnP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.1 CnP for NASPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.2 CnP for IPGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6.1 IPGs tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 6 – ARTICLE 1: WHEN NASH MEETS STACKELBERG . . . . . 71
6.1 Games, Definitions, ad Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.2 Existing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Hardness of Finding a Nash equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 An Enumeration Algorithm to find MNEs for NASPs . . . . . . . . . . . . . . . . . . . . . 89
6.5 Enhancing the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5.1 Inner Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5.2 Enhancements for PNEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6 Computational Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.6.1 Strategic Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.6.2 Case Study – Chile-Argentina Energy Markets . . . . . . . . . . . . . . . . . . . . . 101



xiii

6.6.3 Speed Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

CHAPTER 7 – ARTICLE 2: ZERO: PLAYING MATHEMATICAL PRO-
GRAMMING GAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Why Games and Equilibria? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4 Modeling the Knapsack Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.5 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

CHAPTER 8 – GENERAL DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

CHAPTER 9 – CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . 118
9.1 Summary of Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.2 Extensions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



xiv

LIST OF TABLES

Table 4.1 Results for KPG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 4.2 Results for NFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 5.1 NASPs summary results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 5.2 IPGs summary results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 5.3 IPGs results in absolute values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 5.4 IPGs results (in percentage) with respect to the m-SGM. For GeoT (s),

and #It, the lower the better. As of SW ∗, the higher the better. . . . . 67
Table 6.1 Results summary of different algorithmic configurations for Instance-

SetA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 6.2 Results summary of different algorithmic configurations for InstanceSetB.103
Table B.1 Description of the parameters for EPEC instances. . . . . . . . . . . . . . . . . . 143
Table B.2 MNE and PNE results for InstanceSetA. Columns: # - Instance Number.

L - Number of leaders in the instance. F - Number of followers each
leader has. FE - Time taken for full enumeration algorithm. seq1 to
rand5 - Time taken for inner approximation with different extension
strategies. MNE- existence (or time limit reached TL). FE-P - Time for
full enumeration to find a PNE . PNE- existence (or time limit reached
TL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Table B.3 MNE and PNE results for InstanceSetB. Same notation as table B.2. . 146
Table B.4 Instances’ solutions for InstanceSetInsights. The columns are, in order

of appearance: the instance’s number, the boolean tax switch (Ta) and
the trade switch (Tr). Then, the set of results associated with each of
the two countries (Country One, and Country Two). In particular: the
unit-energy production level Prod, the domestic price per unit-energy
$(E), the import Imp and export Exp unit-energies, the export price
$(E), and the tax per unit-emission Tax. Furthermore, for each of the
the 3 followers of each country, we have the type Ty (C for coal, G for
gas, or S for solar), the associated emission cost per unit-energy E, and
its production Prod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



xv

LIST OF FIGURES

Figure 2.1 Optimizing c⊤x over GR results in the maximizer x̄. In (a.), branching on
the variable xt results in a feasible left sub-problem, and an infeasible
right sub-problem. In (b.), cutting off x̄ from GR through the cut
π⊤x ≤ π0 (equivalent to xj ≤ ⌊x̃t

j⌋). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2.2 The class of MPGs and some sub-classes: IPGs, finite games, and RBGs. 12
Figure 5.1 A graphical representation of the CnP algorithm. . . . . . . . . . . . . . . . . . . 52
Figure 5.2 A 2-dimensional example of algorithm 4 trying to separate x̄ from

cl conv(X ). Here, X = {conv(v2, ν)}⋃{conv(v1, v3) + cone(r1)}. In
light blue, cl conv(X ), while in dark blue its inner approximation W =
conv(v1, v2, v3) at a given iteration of the ESO. . . . . . . . . . . . . . . . . . . . . . 58

Figure 6.1 A schematic representation of a NASP . The vertical arrows are Stackel-
berg interactions (i.e, sequential decisions), while the horizontal ones
are Nash interactions (i.e, simultaneous decisions). . . . . . . . . . . . . . . . . . 72

Figure 6.2 A pictorial reprsentation of algorithm 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 7.1 A schematic view of ZERO’s modules, 10000 lines of code, 50 files, 40

classes, and 450 functions. The namespaces are in gray, and the relative
content is grouped below. The primitive classes are in purple, and the
associated inheritor classes are in blue. Nested namespaces are in green.110

Figure 7.2 An Example of a C++ instantiation of a 2-player Knapsack Game in
ZERO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



xvi

LIST OF SYMBOLS AND ACRONYMS

AGT Algorithmic Game Theory
CNP Cut-And-Play
EPEC Equilibrium Problem with Equilibrium Constraints
ESO Equilibrium Separation Oracle
GT Game Theory
IEDS Iterated Elimination of Dominated Strategies
IPG Integer Programming Game
LCP Linear Complementarity Problem
MIP Mixed Integer Programming
MNE Mixed Nash Equilibrium
MPG Mathematical Programming Game
NASP Nash Game Among Stackelberg Players
OSW Optimal Social Welfare
PNE Pure Nash Equilibrium
PAG Polyhedrally Aproximated Game
POA Price of Anarchy
POS Price of Stability
PRLP Point-Ray Linear Program
KPG Knapsack Game
KKT Karush-Kuhn-Tucker (conditions)
RBG Reciprocally-Bilinear Game
SSI Subset Sum Interval



xvii

LIST OF APPENDICES

Appendix A THE CUT AND PLAY ALGORITHM . . . . . . . . . . . . . . . . . 136
Appendix B WHEN NASH MEETS STACKELBERG . . . . . . . . . . . . . . . . 138



1

CHAPTER 1 INTRODUCTION

In many decision-making settings, a selfish agent seeks to optimize its benefit given some
situational constraints. Mathematically, the decision-maker’s task is often formulated as a
Mixed Integer Programming (MIP) problem, a mathematical program where some discrete
variables represent indivisible quantities or choices. MIP offers compelling modeling capa-
bilities for real-world problems, and its application domains include, to name a few, airline
scheduling, kidney exchange programs, energy dispatching, and production planning. However,
decision-making is rarely an individual task: each selfish decision-maker often interacts with
other analogously self-interested decision-makers.

In the past two decades, Algorithmic Game Theory (AGT ) emerged to deepen the under-
standing of these complex interactions among self-interested agents, especially in the context
of the Internet [118]. Generally, AGT represents such interactions through games among
self-interested agents and analyzes their outcomes’ efficiency (i.e., quality) and computability
properties. In many real-life applications, the agents – individuals, organizations, or algorithms
– have limited resources in terms of time, money, and computing power, and thus optimization
and computability matters play crucial roles.

This thesis stands at the interface of AGT and MIP and studies the strategic interaction of
selfish agents – or players – optimizing their benefits through mathematical programs. As we
showcase, we believe singular opportunities stem from a better interplay between AGT and
MIP. First of all, the two disciplines share two crucial elements: they both provide powerful
modeling capabilities for real-world problems and devote significant effort to computability
matters. Further, they also share a common origin, even from a historical perspective.

Historical perspective. In the aftermath of World War II, two of the most important
paradigms of both Game Theory (GT ) and Mathematical Programming originated in Princeton
and shared John Von Neumann as a common ancestor.1 Von Neumann discovered what
is now known as linear programming duality, an elegant and essential theory at the core
of Mathematical Programming theory and practice. As George Dantzig later evoked, Von
Neumann discovered duality through the lenses of GT : “I have just recently completed a
book with Oscar Morgenstern on the Theory of Games. What I am doing is conjecturing
that the two problems [primal and dual linear program] are equivalent.” [48]. The pioneering
book of Morgenstern and Von Neumann [115] – along with the seminal contributions of

1A brief review of the historical events is in [138].
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Nash [116, 117] – transformed the scientific perspective on strategic behavior. Despite Von
Neumann’s obsession with computability, the physical tools available at the time were not
sufficiently mature to propel significant advances in computational GT . Decades later, with the
advent of the Internet and the availability of powerful computational platforms, game theorists
became increasingly interested in GT frameworks and their connection to algorithms. Indeed,
the Internet promoted the development of AGT , a discipline focusing on the interaction
between GT and algorithms, with a distinct spotlight on computability. As Scott Shenker
said, “the Internet is an equilibrium, we just have to identify the game” [118].

This thesis provides new paradigms to better grasp the dynamics of multi-agent decision-
making in competitive settings, where agents are solving optimization problems. In particular,
we study what we define as Mathematical Programming Games (MPGs), i.e., simultaneous
games where the agents (players) solve optimization problems. In MPGs, the strategic
interaction takes place in the objective of each player, namely, each player’s objective includes
variables from its opponents’ optimization problems. The family of MPGs covers many known
games: for instance, some classes of bilevel programs, Integer Programming Games (IPGs),
and even paradigmatic games from AGT such as Network Formation Games [5]. For the
purpose of this dissertation, we employ the Nash equilibrium [116, 117] as the leading solution
concept and center our contributions around computing and selecting (Nash) equilibria in
several classes of MPGs.

1.1 Overview and Objectives

This thesis proposes new perspectives to analyze the strategic interaction of players solving
mathematical programs and specifically focus on the interplay of AGT and MIP. We devise
the concept of MPG to provide a unifying framework for this interplay, and we frame our
contributions on both methodological and practical perspectives. Our research employs the
Nash equilibrium as the leading solution concept, and it centers around the following principle:
in MPGs, the plausibility of Nash equilibria stems from the availability of efficient tools to
compute and select them. Broadly, the research we propose tackles the following fundamental
questions:

(i.) Can MPGs accurately model real-world problems?

(ii.) How different Nash equilibria compare in terms of efficiency (i.e., quality)?

(iii.) How do we build efficient algorithms to compute and select such equilibria?

(iv.) What are the theoretical properties of these algorithms?
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(v.) What are the prescriptive insights that equilibria provide in real-world applications?

(vi.) Can MPGs’ equilibria promote socially beneficial outcomes?

From a methodological perspective, we aim to understand the theoretical and algorithmic
aspects of computing and selecting Nash equilibria in MPGs. This includes, for instance,
the design of efficient algorithms and theoretical frameworks to characterize and compute
equilibria and the computational complexity associated with determining their existence.
From a practical perspective, we aim to provide a framework for extending the broad family
of problems involving typical MIP applications – to name a few, logistics, scheduling, tactical
decision-making – to a multi-agent setting. In this context, we aim to identify some applications
domains where MPGs provide better decision-making insights and protect the collectivity
of decision-makers from socially harmful selfish behaviors. We articulate this thesis in four
self-contained chapters, each developing a research theme intersecting the abovementioned
goals.

1.2 Contributions

The ZERO Regrets Algorithm: Optimizing over Pure Nash Equilibria via Integer
Programming (Chapter 4, [57]) This first work addresses the issue of computing and
selecting equilibria in a class of IPGs where objectives are linearizable through standard MIP
techniques. We introduce ZERO Regrets, a cutting plane algorithm to compute, enumerate,
and select Pure Nash equilibria (PNEs), i.e., equilibria involving only one pure action per player.
In practice, the algorithm solves a difficult (i.e., NP-hard) problem while simultaneously
having access to an oracle solving a likewise difficult problem. We introduce the concept
of equilibrium inequality, namely an inequality that is possibly invalid for non-equilibria
strategies but always valid for any strategy appearing in at least a game’s PNE . We provide
a class of equilibrium inequalities and prove – by devising the concept of equilibrium closure
– they are sufficient to describe the convex set containing all the PNEs. ZERO Regrets
manages to compute efficient (i.e., with a low price of stability) PNEs for Network Formation
Games, a well-studied family of games in AGT , and for Knapsack Games (i.e., IPGs where
each player solves a binary knapsack problem). Further, we characterize the computational
complexity of determining if a Knapsack Game admits a PNE and provide theoretical bounds
on its equilibria’s efficiency (i.e., the price of stability and anarchy). Notably, we formulate a
paradigmatic problem of AGT– the Network Formation Game – through an IPG and select
its equilibria through ZERO Regrets. Up to our knowledge, this contribution is the first one
providing a computationally efficient algorithm to select and enumerate PNEs in IPGs.
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The Cut and Play Algorithm: Computing Nash Equilibria via Outer Approxima-
tions (Chapter 5, [33]) We study the problem of computing an MNE in Reciprocally-Bilinear
Games (RBGs), namely MPGs where each player’s objective is linear in its variables and
contains bilinear terms in its variables and the ones of its opponents. We prove the set
containing all the (mixed) strategies for any player i is the polyhedron given by the convex
hull of the feasible region of its optimization problem. Starting from this result, we introduce
Cut-and-Play, an algorithm to compute Mixed Nash Equilibria (MNEs) – a generalization of
PNEs– in RBGs. This cutting plane algorithm computes equilibria by exploiting a series of
approximations of each player’s optimization problem and leveraging branching and cutting
plane methods. The Cut-and-Play algorithm is general and extensible, and it integrates with
existing mathematical programming solvers. In practice, it outperforms the state-of-the-art
algorithms in both computing times and equilibria efficiency.

When Nash Meets Stackelberg (Chapter 6, [31]) We explore a class of simultaneous
non-cooperative games among the leaders of continuous Stackelberg games (NASP), i.e., leader-
followers games. In NASPs, each leader solves a linear bilevel program, while followers solve
convex quadratic problems. From a complexity perspective, we characterize the computational
complexity of determining whether an instance of this game has an equilibrium or not into a
Σp

2-hard decision problem. Furthermore, we devise a series of algorithms based on enumerative
procedures to compute and select equilibria. We provide a contextualization of NASPs
in the realm of energy markets and provide extensive computational tests on a range of
NASPs instances. Finally, we propose a real-world study on a simplified version of the
Chilean-Argentinian energy market and derive some managerial insights from the game’s
Nash equilibria.

ZERO: Playing Mathematical Programming Games (Chapter 7, [58]) In this last
contribution, we provide a software library for equilibria computation in MPGs. We present
ZERO, a modular and extensible C++ library interfacing Mathematical Programming and
GT . ZERO provides a comprehensive toolkit of modeling interfaces for designing MPGs,
helper tools, and algorithms to find Nash equilibria. Specifically, the software supports RBGs,
IPGs, and extended support for integer non-convexities, linear bilevel problems, and linear
equilibrium problems with equilibrium constraints. The library is modular and provides
all the elementary ingredients for devising algorithms and implementations for RBGs. By
releasing ZERO, we aim to encourage methodological advancements in MPGs and lower the
associated entry barriers.
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1.3 Thesis Outline and Organization

We organize this dissertation as follows. In Chapter 2, we formalize the background notions and
definitions, while, in Chapter 3, we briefly provide a literature overview by providing the main
pointers to the previous works. We complement this literature review by adding additional
relevant elements in each chapter. In Chapters 4 to 7, we present and develop the previously
outlined contributions as self-standing works. In Chapter 8, we discuss the contributions from
a unified perspective, highlighting the transversal elements and the interactions among works.
Finally, in Chapter 9, we summarize our work and elaborate on its strengths, limitations, and
future research directions.
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CHAPTER 2 BACKGROUND

This section lays out the background definitions and the common language we use throughout
the dissertation. The content in the sequel should serve as a self-contained primer on the
diagonal concepts we deal with in the following chapters.

2.1 Polyhedra, Optimization, and Oracles

We review some basic concepts of polyhedral theory. We employ some standard definitions
from convex [20] and polyhedral [42] theories. Given a convex set K ∈ Rk, we denote as
cl(K), int(K), bd(K), dim(K), the closure, interior, boundary and dimension of K. Given
a set A, let conv(A) and cone(A) be the convex hull and the conic hull of elements in A,
respectively. Given (π, π0) ∈ Rk × R, we define as valid inequality for K a linear inequality
in the form π⊤x ≤ π0 holding for any x ∈ K. A cut is a valid inequality π⊤x ≤ π0 for K

violated by x̃ ∈ Rk, i.e., π⊤x̃ > π0 and π⊤x ≤ π0 for any x ∈ K. We define the separation
oracle as the blackbox solving the separation problem in Definition 1.

Definition 1 (Separation Problem). Given a closed convex set K̄, and a point x̄, either:
(i.) determine that x̄ ∈ K̄ and output yes, or (ii.) determine that x̄ /∈ K̄, and output no and
a cut (π, π0) ∈ Rk × R for x̄.

Polyhedra. A polyhedron P ⊆ Rp is a convex set generated by the intersection of finitely
many halfspaces (i.e., a set of linear inequalities). Given a valid inequality π⊤x ≤ π0 for
P , the set F = P ∩ {x ∈ Rp : π⊤x = π0} is a face for P . A point x ∈ P is an extreme
point if it is not a convex combination of two points in P , i.e., with 0 < α < 1. A recession
direction for P is a vector r ∈ Rp so that, for any x ∈ P , x + αr ∈ P for any α ≥ 0. An
extreme ray for P (or an extreme recession direction) is a recession direction for P that is
not a convex combination of two or more other recession directions of P . We define rec(P )
and ext(P ) as the set of recession directions and extreme points of P , respectively. Hence,
P is a combination of its extreme points V = ext(P ) and recession directions R = rec(P ),
i.e., P = conv(V ) + cone(R). The face induced by an inequality π⊤x ≤ π0 on P is the
polyhedron F (π, π0) = {x ∈ P : π⊤x = π0}. If dim(F (π, π0)) = 0, the face is called a vertex
(an extreme point) of P , while if dim(F (π, π0)) = dim(P ) − 1, we have a facet of P . The
minimal description of P is the set of all the facets of P .



7

MIP problem. We define as MIP problem an optimization problem where some variables
are required to be integer, as in (2.1). Specifically, we consider MIP problems where the
objective function is linear, and finitely many linear constraints and integer requirements
represent the feasible region. Thus, the optimization problem reads as

max
x
{c⊤x : x ∈ G}, G = {Ax ≥ b, x ≥ 0, xj ∈ Z ∀j ∈ I}. (2.1)

In this formulation, I encapsulates the indexes of integer-constrained variables, the matrix A

and the vector b have integer entries (i.e., they describe a rational polyhedron). Further, we
assume the system Ax ≥ b has no particular structure. We define GR in (2.2) as the linear
relaxation of G, namely the polyhedron given by the linear inequalities in G (and without the
integrality requirements), so that

GR = {Ax ≥ b, x ≥ 0, Lj ≤ xj ≤ Uj ∀j ∈ I}. (2.2)

In (2.2), Lj and Uj are the lower and upper bounds of the j-th integer-constrained variable.
Most of the procedures we present can generalize to other classes of objective functions
(i.e., convex quadratic objective functions), we restrict our exposition to the case of linear
objective functions. In the MIP problem of (2.1), GR is a polyhedron and so is conv(G): in
particular, the latter is the so-called perfect formulation of the problem in (2.1). In other
words, the solution to the linear program maxx{c⊤x : x ∈ conv(G)} is the optimal solution of
(2.1) fulfilling all the integrality requirements and linear constraints. Meyer’s theorem [114]
guarantees there always exists a perfect formulation for the problem in(2.1) (if the coefficients
in(2.1) are all rational). Nevertheless, the perfect formulation may be of exponential size with
respect to the input data. In practice, one only needs an intermediate polyhedron between
GR and conv(G) so that optimizing c⊤x over it yields an integer-feasible solution. Two classic
methods for solving MIPs are the Branch-and-Bound algorithm [101] and the cutting plane
algorithm [79].

Branch-and-Bound. The Branch-and-Bound algorithm splits the problem (2.1) in a series
of smaller sub-problems in order to implicitly explore the solution space. A tree graph maps
the relationship among the different sub-problems: each node in the tree corresponds to a
sub-problem, and each edge points to a father-child relation. Each node is a MIP problem –
possibly with some extra (invalid) inequalities enforcing additional bounds on the problem’s
discrete variables – whose relaxation gives a bound on (2.1). Let t be the index associated
with each sub-problem, let x̄t be the solution of node t, and let Bt = {i ∈ I : x̄t

i /∈ Z} be
the set of fractional variables in x̄t that also belong to I. The algorithm starts from a root
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node t = 0, which is associated with the linear relaxation of (2.1), and splits the problem
exploiting the information in Bt. Specifically, the problem of node t generates two child
problems tDOW N and tUP induced by picking one fractional variable j ∈ Bt, and enforcing
that xj ≤ ⌊x̄t

j⌋ in tDOW N , and xj ≥ ⌊x̄t
j⌋ in tUP . Clearly, these linear inequalities are invalid

for the problem in(2.1), yet the two sub-problems tDOW N and tUP together necessarily contain
all the solutions to the original problem. The splitting mechanism generating tDOW N and
tUP is the so-called branching procedure, which also excludes x̄t from the solutions space.
Further, the relaxations in tDOW N and tUP inherit an upper bound from their parent node t,
namely, their optimal value cannot improve the one of t. By exploiting this bound hierarchy,
the algorithm implicitly explores the search space. For instance, assume that x̃ is a feasible
solution for (2.1); then, any node with a bound not improving the one given by x̃ cannot
improve the bound of the latter. Therefore, the algorithm fathoms any node (i.e., close
any node) that does not have the chance to improve the best incumbent solution so far. In
practice, this implies that the Branch-and-Bound implicitly explores the solution space by
only considering “promising” nodes, i.e., nodes potentially containing improving solutions.
Consequently, finding good quality solution early in the tree means generating smaller trees
and possibly proving optimality quickly. Further, the node selection strategy – the strategy
employed for selecting the next node to consider – and the variable selection strategy – the
strategy by which one picks a fractional variable in Bt at node t – often play essential roles in
terms of speeding up the algorithm’s convergence. Finally, in MIPs as the one in (2.1), the
Branch-and-Bound terminates in a finite number of steps and outputs an optimal solution
or proves the problem is infeasible or unbounded. Figure 2.1a provides a visualization of an
iteration of the branching procedure.

Cutting plane algorithms. The second fundamental class of algorithms is the one of
cutting planes methods. We specifically describe an abstraction of the cutting plane algorithm
introduced by Gomory [79]. The algorithm starts from the polyhedron GR, and iteratively
refines it by adding valid inequalities for conv(G). Let GC = GR, and let x̄ be the maximizer
of maxx{c⊤x : x ∈ GC}. If x̄ does not fulfill the integrality requirements in I, then x̄ ∈
GC\ conv(G). Equivalently, a separation oracle – given x̄ and an implicit description of conv(G)
– outputs a cut π⊤x ≤ π0 valid for conv(G) and cutting off x̄. This latter cut becomes part
of the description of GC , namely GC = GC ∩ {x : π⊤x ≤ π0}, and the process restarts by
computing x̄ again. The algorithm terminates when the optimization problem is infeasible
or unbounded, or x̄ fulfills the integrality requirements. The cutting plane algorithm will
rarely terminate with the perfect formulation conv(G). Indeed, one expects to retrieve an
intermediate polyhedron GC between conv(G) and GR over which optimizing a given linear
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function c⊤x results in a x̄ satisfying the integrality requirements. In other words, one expects
to refine GR until the vertex x̄ in the direction given by c belongs also to conv(G). Figure 2.1b
provides a visualization of an iteration of a cutting plane algorithm.

max(c⊤x)
x̄

xj ≥ ⌊x̄tj⌋+ 1xj ≤ ⌊x̄tj⌋

(a)

max(c⊤x)
x̄

x ≤ π0

(b)

Figure 2.1 Optimizing c⊤x over GR results in the maximizer x̄. In (a.), branching on the
variable xt results in a feasible left sub-problem, and an infeasible right sub-problem. In (b.),
cutting off x̄ from GR through the cut π⊤x ≤ π0 (equivalent to xj ≤ ⌊x̃t

j⌋).

Branch-and-Cut. The seminal work of Padberg and Rinaldi [120] combined both
branching and cutting procedures in the so-called Branch-and-Cut algorithm. The authors
introduced the algorithm in the context of the traveling salesman problem, although their
approach is general and applies to any MIP in the form of (2.1). The work from Padberg and
Rinaldi provides – also from a chronological point of view – the first efficient combination of
a cutting plane method, a branching scheme, and a rich set of heuristics. We refer the reader
to [1, 15, 106] for more detailed surveys on the MIP technology.

2.2 Games

GT lies at the interface of Mathematics, Economics, and Social Sciences. This discipline
attempts to shed new light on the dynamics with which individuals and groups behave and
make decisions, often in contexts such as markets, governmental institutions, and, more
recently, the Internet. The ultimate goal is twofold; first, an analytical understanding of the
decision-making process and its drivers. Second, a prescriptive recommendation on how an
agent should act to shield against the misbehavior and selfishness of its peers.

A common language. We formally introduce some of the game-theoretic terms we will
use in the dissertation. We call a game a set of players (or agents) making a decision with a



10

given order of play. Each player chooses an alternative from its set of feasible alternatives, or
actions. When all players decided, each player’s outcome – or its payoff – is a function of its
decision and the ones of the other players. A game has perfect information if each player,
when deciding, is perfectly aware of any choices that happened before its decision. Further, a
game has complete information if every player is aware of the payoff functions and the actions
of every other player. We call a player rational if it would never play an action hurting (i.e.,
decreasing when it maximizes its benefit) its payoff, i.e., a player would never play an action
yielding a payoff of k if it can get k + ϵ with ϵ > 0. Players may decide simultaneously, as one
would do in rock paper scissors, or sequentially, namely following a given order of priority. We
define a game as finite if the set of actions available to each player is finite, there are finitely
many players and outcomes, and the game does not continue indefinitely but terminates at
some point.

This thesis focuses on simultaneous and sequential games with complete and perfect informa-
tion where all players are rational. Most importantly, we assume there exists a preferable
representation of the decision problems that players face. Specifically, we assume one can
represent each player’s decision-making problem as a mathematical program. We formalize
these assumptions in Definition 2 with the concept of MPG. As a standard game theory
notation, let xi denote the vector of variables of player i, and let the operator (·)−i be (·)
except i. The vector x−i = (x1, . . . , xi−1, xi+1, . . . xn) represents the variables of i’s opponents
(all players but i).

Definition 2 (Mathematical Programming Game). A Mathematical Programming Game
(MPG) among n players is a simultaneous game where each rational player i = 1, 2, . . . , n

solves the optimization problem

max
xi

f i(xi, x−i) (2.3a)

s.t. xi ∈ X i (2.3b)

where X i and f i(xi, x−i) : ∏n
j=1X j → R are the set of actions and the payoff function of i,

respectively.

The optimization problem of player i is parametrized in x−i, namely plugging x−i as a parameter
results in an optimization problem purely expressed in the variables xi. Furthermore, each
X i only includes the variables from the respective player i. Depending on the structure of X i,
MPGs may represent several well-studied classes of games.
We define MPGs intending to provide a general and unified category for games represented
through mathematical programs. Indeed, the taxonomy we propose follows from the following
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observations:

(i.) Actions representation. We implicitly represent each player’s action space with a set X i.
The action space may be unbounded and contain infinitely or finitely many elements.
This representation enables the understanding of the game even from a geometrical
perspective. For instance, when for any i the set X i is a polyhedron and f(xi, x−i) is a
linear function in xi (given the parameters x−i), each player is solving a (parametrized)
linear program. As the vertices of X i are geometrically relevant for the simplex method,
they are also relevant for the game: no rational player i would adopt a strategy in
the interior of its polyhedron X i as no optimal solution to the i-th linear program
lies in the interior of X i. The definition of MPG is similar to the one of the so-called
Nash Equilibrium Problems [63]. However, most of the methods developed in this
latter context (i.e., equilibrium programming methods) often assume X i has a specific
structure, i.e., the players’ feasible regions are continuous [64, 130]. In the broad
definition of MPGs, we do not assume that computing equilibria should require any
specific method or structure on any X i.

(ii.) Intersecting objectives with AGT. We aim to build a language intersecting both elements
of game theory and mathematical programming. In this sense, our MPG definition is as
broad as possible. We aim to extend the theoretical analysis on the efficiency of equilibria
performed on standard AGT games (i.e., the price of stability and anarchy) to the realm
of MPGs. Concurrently, we aim at providing theoretical and algorithmic frameworks to
select equilibria in MPGs. For instance, as we will show later, we reformulate a class of
Network Formation Games (i.e., a set of players build a network on a graph by sharing
the cost of the edges) as an MPG, and subsequently select the game’s equilibria with
optimization tools.

(iii.) Modeling requirements. AGT and mechanism design [118] often change the game’s
structure or incentives in order to ensure one can efficiently compute equilibria with
guaranteed efficiency properties (i.e., prices). However, this may not be the case in
applications requiring an explicit optimization problem that captures the application’s
complexity. Representing the decision-makers’ complex set of operational requirements
through constraints of MPGs increases modelization fidelity: it may be the case that
the application’s requirements do not allow to simplify the model. Furthermore, the
complexity associated with the model itself often translates into equivalently rich insights
stemming from the game’s equilibria. This is, for instance, the case with what we
present in Chapter 6 in the context of an energy-market application, where multi-level
hierarchical interactions render a complex model.
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Strategies and payoffs. We call each point xi ∈ X i a pure strategy for i. Let X = ∏n
i=1X i

be the space of all players’ variables: then, we call x ∈ X = (x1, . . . , xn) a pure strategy profile
for the game. Let ∆i be the space of Borel probability measures over X i, i.e., a space where
each player i randomizes over its pure strategies. Then, any σi is a mixed strategy if σi ∈ ∆i.
We define supp(σi) = {xi ∈ X i : σi(xi) > 0} as the support of the mixed strategy σi, with
σi(xi) being the probability of playing xi in σi. Any mixed strategy σi with a singleton support
| supp(σi)| = 1 is a then a pure strategy for i. Similarly to pure strategies, ∆ = ∏n

i=1 ∆i, and
σ ∈ ∆ is a mixed strategy profile for the game. The payoff of i under the mixed strategy
profile σ is

f i(σi, σ−i) =
∫

X i
f i(xi, x−i)dσ. (2.4)

In the sequel, we review some of the families of MPGs we consider in this thesis. Figure 2.2
provides a visualization of the relationship among such families.

Figure 2.2 The class of MPGs and some sub-classes: IPGs, finite games, and RBGs.

2.2.1 Integer Programming Games

An Integer Programming Game (IPG) is an MPG where, for each player i, the set X i is a
MIP set defined as

X i = {Aixi ≥ bi, xi
j ∈ Z for any j ∈ I i}. (2.5)

Without loss of generality, we assume the entries of the system of inequalities Aixi ≥ bi

are integer numbers (i.e., the system of inequalities describes a rational polyhedron) and I i
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contains the indices of the integer-constrained variables. Köppe et al. [95] introduced1 the
IPGs, while Carvalho et al. [29] proved the class of IPGs include any finite game.

Example 1. Consider the Rock-Paper-Scissors game, where n = 2 players simultaneously
decide whether to play rock, paper, or scissors. We can reformulate the game as an IPG as
follows. Each player i has 3 binary variables: xi

R = 1 if i plays rock, xi
P = 1 if it plays paper,

and xi
S = 1 if it plays scissors. The payoff is 0 if both players play analogous strategies (i.e.,

x1
R = x2

R), 1 if i wins, and −1 if i loses. Thus, each of the two players solves the parametrized
integer program

max
xi

− 1xi
Rx−i

P + 1xi
Rx−i

S + 0xi
Rx−i

R + 1xi
P x−i

R − 1xi
P x−i

S (2.6a)

+ 0xi
P x−i

P − 1xi
Sx−i

R + 0xi
Sx−i

S + 1xi
Sx−i

P (2.6b)

s.t. xi
R + xi

P + xi
S = 1, xi ∈ {0, 1}3. (2.6c)

IPGs inherit the modeling capabilities of MIP and are expressive modeling tools extending
typical MIP and Operations Research tasks – such as resource allocation, scheduling, or
routing – to a multi-agent setting.

2.2.2 Reciprocally-Bilinear Games

A Reciprocally-Bilinear Game (RBG) is an MPG where, for each player i, the objective
f i(xi, x−i) takes the form of

f i(xi, x−i) = (ci)⊤xi + (x−i)⊤Cixi. (2.7)

In f i(xi, x−i), the entries of the vector ci and the matrix Ci are integer numbers. While IPGs
constrain the players’ feasible sets (their actions), RBGs enforce a particular structure on
their objectives (their payoffs). In an IPG, when each player has an objective conforming
to (2.7), the IPG is also an RBG. Vice versa, when each player in an RBG has a feasible
set in the form of MIP set (as in (2.5)), then the RBG is also an IPG. RBGs force the
interaction among players to respect a bilinear function in xi and x−i. In this thesis, we
study polyhedrally-representable RBGs, namely RBGs where, for any player i: (i.) an oracle
can optimize a linear function over X i, and (ii.) cl conv(X i) is a polyhedron. Many classes
of well-studied optimization problems are polyhedrally-representable: for instance, linear

1Some authors deal with Nash Equilibrium Problems with discrete variables, which correspond to IPGs.
For instance, Sagratella [130]. In the literature of IPGs, Nash equilibrium problems with discrete variables
are rarely cited.
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complementarity problems, some classes of MIP problems, linear bilevel programs and reverse
convex programs [85, 86].

2.2.3 Stackelberg Games and Bilevel Programming

A Stackelberg competition [53, 139] is a game where two players play sequentially, namely,
there are two rounds of decisions. First, the so-called leader (the first player) decides, and
afterward, the second player (the follower) decides. Bilevel Programming generalizes the
Stackelberg competition so that one or more followers decide after the leader [40].

Mathematical programming formulation. In what follows, we use an apex i to later
extend the formulation for multiple leaders. Let wi be the leaders’ variables, and mi the
number of its followers. Each follower j = 1, . . . , mi controls the variables yi,j, and the set
of all leader and followers variables is given by xi = (wi, yi), with yi = (yi,1, . . . , yi,mi). We
present the general formulation for the bilevel problem in (2.8), where each leader i solves the
optimization problem

max
wi

l(xi) (2.8a)

s.t. xi ∈ W i (2.8b)

yi,j ∈ arg max
yi,j
{f i,j(xi) : yi,j ∈ Y i,j(wi)} ∀j = 1, . . . , mi (2.8c)

xi = (wi, yi,1, . . . , yi,mi). (2.8d)

The leader optimizes a function l(xi) (2.8a), subject to some constraints W i (2.8b); both
the leader’s objective function and feasible region may contain its followers’ variables. Each
follower j solves a mathematical program as in (2.8c), where its objective f i,j(xi) can include
its variables as well as the leader’s and other followers’ ones. Indeed, the followers are playing
a simultaneous game among themselves whenever their objective function is parametrized in
the variables of other followers, i.e., the j-th objective function includes terms in y−j . Further,
each follower’s feasible region Y i,j(wi) is parametrized through the leader’s variables wi.
For a given leader solution w̄i, there may be multiple optimal solutions for its followers.
Whenever the followers pick the optimal solution benefitting the leader the most, the solution
is optimistic. Otherwise, if the followers damage the leader’s payoff as much as they can, the
solution is pessimistic. In general, bilevel programming has many connections to mathemat-
ical programs with equilibrium constraints2, i.e., mathematical programs with a system of

2We refer the reader to Chapter 6 for more details on Mathematical Programs with Equilibrium Constraints,
bilevel programming, and MPGs.
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complementarity constraints or variational inequalities [110]. From a modeling perspective,
several applications require the bilevel framework to model sequential interactions: to name
a few, taxation schemes for green-energy transition [11, 12, 67, 111], price setting problems
[21, 99, 100], interdiction problems [25, 26], electricity markets problems [89].

A single level. The definition we provide in (2.8) is rather general and encompasses a wide
variety of problems. In some cases, one can reformulate the constraints in (2.8c) so that the
bilevel program collapses to a single-level optimization problem. For instance, if the followers
are solving convex quadratic programs (i.e., linear programs), then the Karush-Kuhn-Tucker
(KKT ) conditions on the followers’ problems (in the form of complementarity constraints)
are sufficient to reformulate the bilevel problem into a single level program. Conversely, if
both the followers’ and the leader’s problem contains integer variables, one may not be able
to reformulate the problem as a single-level mathematical program of polynomial size [25].
From a complexity perspective, deciding if (2.8) admits a solution is generally Σp

2-hard in
the polynomial hierarchy of complexity, as proved by [90]. In other words, one could ideally
have a Branch-and-Bound framework to solve (2.8), yet, it may need a separation oracle
that can simultaneously solve NP-hard problems [54, 108]. This thesis mainly considers
bilevel problems whose lower levels are finitely many convex-quadratic problems, thus bilevel
problems admitting a single-level reformulation.

Complex interactions. Besides followers playing a simultaneous game, it may also
happen that multiple leaders are playing a simultaneous game among themselves. In this case,
each leader’s objective function would include the variables associated with other leaders,
with i being the index of each leader. This complex system of hierarchical interactions is
particularly effective for modeling a series of applications, among which international energy
markets or insurance systems. In this thesis, specifically in Chapter 6, we study this type of
multi-leader bilevel problem through the concept of Nash games among Stackelberg Players
(NASP). In this game, several bilevel leaders play a simultaneous game, their followers play a
simultaneous game, and bilevel leaders play a sequential game with their respective followers.
By reformulating each leader’s problem into a single-level, we will reformulate this game as
an RBG.
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2.3 Equilibria, Stability, and Prices

Solving an optimization problem accounts for finding a feasible solution that maximizes (or
minimizes) a given objective function, subject to some constraints. However, when dealing
with games, we demand solution concepts that take into account the self-interested behavior
of each player. A player may be playing its optimal xi given its opponents’ strategies x−i,
yet this may not be the case for its opponents. Therefore, an opponent may deviate and
pick a strategy whose payoff is more attractive from its perspective. The central question
is whether there exist (or not) some stable solutions so that no player has an incentive to
selfishly defect from them. Arguably, the most famous concept of stable solution is the Nash
equilibrium [116, 117]. Nash equilibria are stable solutions precisely because no single player
has an incentive to profitably defect from them.

Definition 3. Consider an MPG as in Definition 2. A pure strategy profile x̄ = (x̄1, . . . , x̄n)
is a Pure Nash Equilibrium (PNE) if, for any player i and any other strategy x̂i ∈ X i,
f i(x̄i, x̄−i) ≥ f i(x̂i, x̄−i). Similarly, a mixed strategy profile σ̄ is a Mixed Nash Equilibrium
(MNE) if, for any player i and any other mixed strategy σ̂i ∈ ∆i, f i(σ̄i, σ̄−i) ≥ f i(σ̂i, σ̄−i)
holds.

In Definition 3, the inequality’s RHS represents a possible deviation x̂i or σ̂i from the
equilibrium strategy, while the inequality’s direction enforces that any deviation cannot
improve the payoff of the equilibrium. We remark that whenever the MNE σ̄ has a singleton
support for each player – namely when | supp(σ̄i)| = 1 for any i – the MNE is also a PNE .

Efficiency and the benevolent authority. In numerous contexts, a central and
benevolent authority may suggest a strategy to each player in order to maximize a measure
of collective welfare. This welfare measure may be, for instance, the social welfare, namely
the sum of all players’ payoffs. Often, the solution that maximizes this welfare measure –
the so-called social optimum – is not an equilibrium. So, what kind of solution should the
authority suggest instead? First, if the authority proposes a collective solution, it must ensure
there are little to no incentives for the selfish agents to refuse it. Thus, it should propose an
equilibrium so that agents are not incentivized to defer from it. Second, the authority should
propose a solution sufficiently close – in terms of “efficiency” or objective value – to the social
optimum in order to provide an appealing collective welfare to the players (i.e., all players as
a society). The best trade-off between these two objectives is the best Nash equilibrium, i.e.,
the equilibrium that maximizes the welfare measure among all the equilibria (if any).
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Existence, prices, and paradigmatic interrogatives. Not all Nash equilibria are created
equally, assuming at least one exists. First, establishing if an equilibrium exists may turn
out to be a difficult task [49]. Nash proved that there is always an MNE equilibrium in
finite games. However, this does not apply to any game: for instance, in IPGs, deciding
if a PNE exists is generally Σp

2-complete in the polynomial hierarchy [29]. In general, an
equilibrium may exist when there are finitely many strategies or when the game satisfies
some particular requirements; for instance, if all players solve strictly convex programs, there
is a unique equilibrium. Second, in order to provide a measure for equilibria’s efficiency,
Koutsoupias and Papadimitriou [96] introduced the concept of Price of Anarchy (PoA), the
ratio between the welfare value of the social optimum and the worst-possible (in terms of the
welfare’s measure) Nash equilibrium. Symmetrically, Correa et al. [45] and Anshelevich et al.
[4] introduced the Price of Stability (PoS), the ratio between the social optimum’s welfare and
the one of the best-possible Nash equilibrium. Often, the AGT literature focuses on providing
theoretical bounds on these prices by exploiting some of the game’s structural properties
[4, 5, 35, 118, 129]. However, in practice, determining whether Nash equilibria with certain
properties exist, i.e., with a welfare of at least a given threshold, is generally hard [43, 76].

All considered, we could identify four paradigmatic questions regarding Nash equilibria and
their properties that often arise in AGT :

(i.) Does at least one Nash equilibrium exist?

(ii.) How do we compute an equilibrium, if any?

(iii.) How does this equilibrium compare to the social optimum?

(iv.) How do we select an equilibrium if more than one exists?

Usually, the answers to such interrogatives are far from being trivial and may depend on
the game’s properties. In this thesis, we will address these questions from the perspective of
MPGs.
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CHAPTER 3 LITERATURE REVIEW

We provide a brief literature review on the connecting themes of this dissertation. Each of
the four following chapters will complement this review with more specific pointers to the
relevant literature.

Nash Equilibrium and Existence. Nash [116, 117] introduced his equilibrium concept
and proved the existence of at least an MNE in finite games. Glicksberg [78] established the
existence of MNEs for continuous games, i.e., games where the players’ sets of strategies are
nonempty compact metric spaces and their payoff functions are continuous. More recently,
Stein et al. [140] proved that any MNE in a separable game – namely where players’ payoffs
take a sum-of-products form – has a corresponding payoff-equivalent MNE with finite support.
In the context of IPGs, Carvalho et al. [29, 32] proved there is always an MNE whenever all
the players’ strategy sets are nonempty and bounded, i.e., they are described by a polytope
plus some integrality requirements.

Computing Equilibria. A significant stake of the algorithmic approaches related to
computing Nash equilibria deals with finite games. Although the literature is vast, we provide
a synopsis by categorizing the contributions into two prominent families.

The first family is the one of complementarity methods. Historically, the first contribution in
this area is the Lemke-Howson algorithm, a path following method that works for any 2-player
finite game [102]. The algorithm has a strong geometrical interpretation: it represents the
game by associating a polytope to each player and pivoting among its vertices to find an
equilibrium. In the worst case, the algorithm may require a number of exponential pivots
in the number of each player’s pure strategies. The generalization of Eaves [59] can also
solve linear complementarity problems with an exponential worst-case bound [46]. Wilson
[146] and Rosenmüller [127] proposed an extension to the Lemke-Howson algorithm to solve
n-player games. However, their method requires a series of non-linear equation systems.
Von Stengel [144] provides a review on the Lemke-Howson algorithm and other linear methods
for finding Nash equilibria in extensive form and bimatrix games with 2 players. Avis et al.
[7] proposed two algorithms that exploit geometrical arguments similar to the one of the
Lemke-Howson in order to enumerate the Nash equilibria in 2-player games. Audet et al.
[6] proposed an algorithm to enumerate Nash equilibria in bimatrix games (2 or 3-players)
by solving MIP problems associated with the complementarity slackness conditions of each
player’s (parametrized) linear program. Specifically, such conditions stem from the primal-dual
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optimality conditions of the (parametrized) linear programs representing each player’s decision
problem.

The second family is the one of support enumeration algorithms. Given a finite game, the
main idea is to determine whether an equilibrium with a specific support exists or not. A
linear program or an optimization problem can often decide whether the answer to such a
question is positive or negative. Sandholm et al. [133] proposed a series of MIP formulations to
find equilibria with given supports (specifically, in 2-player normal form games) and provided
an extension to select equilibria. Porter et al. [124] proposed a search algorithm that proves
to be highly efficient in practice. The algorithm prioritizes the search towards equilibria with
small and balanced supports.

When each player’s feasible set is large and possibly uncountable, the MPG representation
becomes crucial as the previous methodologies may turn out to be impractical. Therefore,
describing the game through each player’s optimization problem arguably gives the most
compact representation. If each player’s problem is convex in its variables, a broadly studied
family of algorithms is the one of equilibrium programming methods [63], namely methods
where a non-linear complementarity problem can compute an equilibrium. However, such
methodologies generally do not work with non-convex problems, for instance, IPGs. The
only exception is Sagratella [130], that introduced a branching method to enumerate all pure
equilibria when payoffs are convex and convex constraints along with integrality requirements
on variables model the strategy sets. The approach is general and exploits a branching routine
to handle integral non-convexities.

Recently, Carvalho et al. [32] introduced the sample generation method for IPGs to compute
their equilibria. The algorithm determines if an MNE with a given support exists by sampling
strategies from each player’s strategy space and attempting to compute an equilibrium with a
restricted support. Cronert and Minner [47] provided a version of this algorithm to better
select candidate equilibria if more than one exists; however, it only works when players solve
pure integer programs.

Complexity. Determining the hardness of computing an equilibrium is crucial from
a theoretical perspective, and deeply influences algorithmic design. Daskalakis et al. [49]
showed that the task of computing an MNE for finite games – specifically, 3-player games –
is PPAD-complete. Conitzer and Sandholm [43, 44] proved it is NP-hard to determine if an
equilibrium with certain natural properties – i.e., with a given social welfare – exists and the
associated problems are often inapproximable. Carvalho et al. [29, 32] showed that deciding
on the existence of an MNE , as well as of a PNE , in IPGs is Σp

2-complete in the general
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case. For a more detailed exposition and review on the complexity associated with computing
equilibria, we refer to Nisan [118, Ch.2].

Efficiency. When multiple equilibria exist, discriminating among them is especially
relevant. From a theoretical perspective, Harsanyi and Selten [84] provided an elegant and
complete theory of equilibria selection. From a practical perspective, however, equilibria
selection often poses significant algorithmic and theoretical challenges by indirectly exposing
the task of equilibria enumeration. Even for some 2-player [126] and Avis et al. [7] and
bimatrix [6] games, there are considerable computational challenges in designing efficient
algorithms for selecting equilibria. This thesis primarily focuses on measuring the efficiency
of equilibria by determining their prices. Koutsoupias and Papadimitriou [96] introduced
the PoA, and symmetrically, Anshelevich et al. [4], Correa et al. [45] introduced the PoS .
Several works in the AGT literature focus on providing theoretical bounds for PoS and PoA
by exploiting each game’s structural properties and tend to provide algorithms to compute
(approximate) equilibria with given efficiency guarantees [4, 5, 35, 118, 129].
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CHAPTER 4 THE ZERO REGRETS ALGORITHM: OPTIMIZING OVER
PURE NASH EQUILIBRIA VIA INTEGER PROGRAMMING

Authors: Gabriele Dragotto and Rosario Scatamacchia1.

Abstract In Algorithmic Game Theory (AGT ), designing efficient algorithms to compute
Nash equilibria poses considerable challenges. We make progress in the field and shed new
light on the intersection between Algorithmic Game Theory and Integer Programming. We
introduce ZERO Regrets, a general cutting plane algorithm to compute, enumerate, and select
Pure Nash Equilibria (PNEs) in Integer Programming Games, a class of simultaneous and
non-cooperative games. We present a theoretical foundation for our algorithmic reasoning
and provide a polyhedral characterization of the convex hull of the Pure Nash Equilibria. We
introduce the concept of equilibrium inequality, and devise an equilibrium separation oracle to
separate non-equilibrium strategies from PNEs. We test ZERO Regrets on two paradigmatic
classes of games: the Knapsack Game and the Network Formation Game, a well-studied
game in AGT . Our algorithm successfully solves relevant instances of both games and shows
promising applications for equilibria selection.

4.1 Introduction

The concept of Nash equilibrium [116, 117] revolutionized the understanding of the strategic
behavior. In many decision-making settings, a selfish agent seeks to optimize its objective
function (subject to some constraints) and often interacts with other selfish agents influencing
its decisions. The Nash equilibria are stable solutions, meaning that no single agent has an
incentive to profitably defect from them. However, the quality of equilibria – in terms of a
given welfare measure (typically the sum of all agents’ payoffs) – often does not match the
quality of the social optimum, i.e., the best possible solution for the collectivity. In general,
the social optimum is not a stable solution and therefore does not emerge naturally from the
agents’ interactions. Nevertheless, in numerous contexts, a central authority may suggest
solutions to the agents. On the one hand, if the authority proposes a collective solution
to the agents, it should ensure there are little to no incentives to refuse it. On the other
hand, the authority should propose a solution sufficiently close – in terms of quality – to the
social optimum. The best trade-off between these two objectives is the best Nash equilibrium,
i.e., a solution that optimizes a welfare measure among the equilibria. Often, the main

1A pre-print is available in [57].
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focus is on selecting a Pure Nash Equilibrium (PNE), a stable solution where each agent
selects one alternative with unit probability (in contrast to a Mixed Strategy Equilibrium,
where agents randomize over the set of their alternatives). Algorithmic Game Theory (AGT )
studies the intertwining between game theory and algorithms, with emphasis on equilibria’s
efficiency (quality) [118]. AGT attracted significant attention from the computer science and
optimization community in the last two decades. Several recent works [32, 82, 95] considered
Integer Programming Games (IPGs), namely games where the agents solve (parametrized)
integer programs. In this work, we study a class of simultaneous and non-cooperative IPGs
among n players (agents) as in Definition 4, where every player has m integer variables.

Definition 4 (IPG). Each player i = 1, 2, . . . , n solves (4.1), where ui(xi, x−i) – given x−i –
is a linear function in xi with integer coefficients, Ai ∈ Zr×m, bi ∈ Zr.

max
xi
{ui(xi, x−i) : xi ∈ X i}, X i := {Aixi ≤ bi, xi ∈ Zm}. (4.1)

As standard game theory notation, let xi denote the vector of variables of player i, and let
the operator (·)−i be (·) except i. The vector x−i = (x1, . . . , xi−1, xi+1, . . . xn) represents the
variables of i’s opponents (all players but i), and the set of linear constraints Aixi ≤ bi defines
the feasible region X i of i. We assume all integer variables are bounded by appropriate linear
constraints, and thus that X i is finite. In IPGs, the strategic interaction takes place in the
players’ objective functions, and not within their feasible regions. Specifically, players choose
their strategy simultaneously, and each player i’s utility ui(xi, x−i) is a linear function in xi

and parametrized in i’s opponents variables x−i. We assume the entries of Ai and bi and the
coefficients of ui(xi, x−i) are integers. Further, considering the space of all players’ variables
(x1, . . . , xn), we assume one can always linearize the non-linear terms in each ui with a finite
number of linear inequalities and auxiliary variables (e.g., [137, 143]). Besides, we assume
(i.) players have complete information about the structure of the game, i.e., each player knows
the other players’ optimization problems via their feasible regions and objectives, (ii.) each
player is rational, namely it always selects the best possible strategy given the information
available on its opponents, and (iii.) common knowledge of rationality, namely each player
knows its opponents are rational, and there is complete information. Clearly, if n = 1, the
game collapses to a single linear integer program. However, for n > 1, the problem is an IPG
[32, 95]. In this work, we focus on optimizing over the set of Pure Nash Equilibria (PNEs) for
the IPG defined above, and on characterizing the polyhedral structure of the set containing
the PNEs.
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Literature. Not all Nash equilibria are created equal. Three paradigmatic questions
in AGT are often: (i.) Does at least one PNE exist? (ii.) How good (or bad) is a PNE
compared to the social optimum? (iii.) If more than one equilibrium exists, can one select the
best PNE according to a given measure of quality? Even from an algorithmic perspective,
the answers to such questions often require a cumbersome effort. Establishing that a PNE
does not exist may turn out to be a difficult task [49]. Nash proved that there is always an
equilibrium in finite games (i.e., with a finite number of strategies), yet it may be a Mixed
Strategy Equilibrium. In IPGs where the set of players’ strategies is large, deciding if a
PNE exists is generally Σp

2-hard in the polynomial hierarchy [29]. To measure the efficiency
of equilibria, [96] introduced the concept of Price of Anarchy (PoA), the ratio between the
welfare value of the worst-possible equilibrium and the welfare value of the social optimum.
Similarly, [4, 45] introduced the Price of Stability (PoS), the ratio between the welfare value
of the best-possible equilibrium and the social optimum’s one. Such definitions hold when
agents minimize a cost, e.g., the costs of routing packets in a network. Otherwise, when
agents maximize their benefits, we exchange numerator and denominator in the PoA (and
the PoS). In the AGT literature, many works focus on providing theoretical bounds for the
PoS and the PoA, often by exploiting the game’s structural properties [4, 5, 35, 118, 129].
Furthermore, equilibria selection indirectly exposes the issue of equilibria enumeration, and
from a practical perspective, little is known about enumeration and selection of PNEs. Even
in some 2-player games (i.e., normal-form [7, 126] and bimatrix [6]) there are considerable
computational challenges in designing efficient algorithms for these tasks. In the context of
IPGs, [32, 33] propose algorithms to compute an equilibrium, not necessarily a PNE , without
focusing on the selection aspect. Recently, [47] introduced an enumerative procedure (based
on [32]), yet, [47] provide results for very small instances (i.e., n = 2 with m = 4 in the
Knapsack game).

Contributions. In this work, we shed new light on the intersection between AGT and
integer programming. We propose a new theoretical and algorithmic framework to efficiently
compute, enumerate, and select PNEs for the IPGs in Definition 4. We summarize our
contributions as follows:

(i.) From a theoretical perspective, we provide a polyhedral characterization of the convex
hull of the PNEs. We adapt the concept of valid inequality, closure, and separation
oracle to the domain of Nash equilibria. Specifically, we introduce the concept of
equilibrium inequality to guide the exploration of the set of PNEs. With this respect,
we provide a general class of equilibrium inequalities and prove – through the concept
of equilibrium closure – they are sufficient to define the convex hull of the PNEs.
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(ii.) From a practical perspective, we design a cutting plane algorithm – ZERO Regrets –
that computes the best PNE for a given welfare measure. This algorithm is flexible
and can potentially enumerate all the PNEs and also compute approximate PNEs.
The algorithm exploits an equilibrium separation oracle, namely a procedure separating
non-equilibrium strategies from PNEs through the class of inequalities we introduce.

(iii.) We test our algorithmic framework on two paradigmatic classes of games from the
realm of IPGs and AGT . First, the Knapsack Game, an IPG where each player solves a
knapsack problem. For this problem, we also provide theoretical results on the hardness
of establishing the existence of PNEs. Second, the class of Network Formation Games,
a well-known and intensely investigated problem in AGT , where players build a network
over a graph via a cost-sharing mechanism. ZERO Regrets proves to be highly efficient
in practice and successfully selects PNEs on relevant instances of both games.

4.2 Definitions

We assume the reader is familiar with basic concepts of polyhedral theory and integer
programming [42]. We introduce further notation and definitions related to an IPG instance
G, where we omit explicit references to G when not necessary. Let X i be the set of feasible
strategies (or the feasible set) of player i, and let any strategy x̄i ∈ X i be a (pure) strategy
for i. Any x̄ = (x̄1, . . . , x̄n) – with x̄i ∈ X i for any i – is a strategy profile. Let vector
x−i = (x1, . . . , xi−1, xi+1, . . . xn) denote the vector of the opponents’ (pure) strategies of player
i. The payoff for i under the profile x̄ is ui(x̄i, x̄−i). We define S(x̄) = ∑n

i=1 ui(x̄i, x̄−i) as the
social welfare corresponding to a given strategy profile x̄.

Equilibria and Prices. A strategy x̄i is a best-response strategy for player i given its
opponents’ strategies x̄−i if ui(x̄i, x̄−i) ≥ ui(x̂i, x̄−i) for any x̂i ∈ X i: equivalently, i cannot
profitably deviate to any x̂i from x̄i. The difference ui(x̄i, x̄−i)−ui(x̂i, x̄−i) is called the regret of
strategy x̂i under x̄−i. Let BR(i, x̄−i) = {xi ∈ X i : ui(xi, x̄−i) ≥ ui(x̂i, x̄−i) ∀x̂i ∈ X i} be the
set of best-responses for i under x̄−i. A strategy profile x̄ is a PNE if, for any player i and any
strategy x̂i ∈ X i, then ui(x̄i, x̄−i) ≥ ui(x̂i, x̄−i), i.e. any x̄i is a best-response to x̄−i (all regrets
are 0). Equivalently, in a PNE no player i can unilaterally improve its payoff by deviating
from its strategy x̄i. We define the optimal social welfare as OSW = maxx1,...,xn{S(x) : xi ∈
X i ∀i = 1, 2, . . . , n}. Given G, we denote as N = {x = (x1, . . . , xn) : x is a PNE for G}
the set of its PNEs. Also, let N i := {xi : (xi, x−i) ∈ N} – with N i ⊆ X i – be the set of
equilibrium strategies for i, namely the strategies of i appearing in at least a PNE . If N is not
empty, let: (i.) ẋ ∈ N be so that S(ẋ) ≤ S(x̄) for any x̄ ∈ N (i.e., the PNE with the worst
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welfare), and (ii.) ẍ ∈ N be so that S(ẍ) ≥ S(x̄) for any x̄ ∈ N (i.e., the PNE with the best
welfare). Assuming w.l.o.g. OSW > 0 and S(ẍ) > 0, the PoA of G is OSW

S(ẋ) , and the PoS is
OSW
S(ẍ) .

Polyhedral Theory. For a set S, let conv(S) be its convex hull. Let P be a polyhedron:
bd(P ), ext(P ), rec(P ), int(P ), is the boundary, set of its vertices (extreme points), cone of
recession directions, and interior, respectively. Let P ⊆ Rp and x̃ /∈ P a point in Rp: a cut is
a valid inequality π⊤x ≤ π0 for P violated by x̃, i.e., π⊤x̃ > π0 and π⊤x ≤ π0 for any x ∈ P .
Given a point x̂ ∈ Rp and P , we define the separation problem as the task of determining
that either (i.) x̂ ∈ P , or (ii.) x̂ /∈ P and returning a cut π⊤x ≤ π0 for P and x̂. For each
player i, the set conv(X i) is the perfect formulation of X i, namely an integral polyhedron
whose vertices are in X i. Note that, since ui(xi, x−i) is linear in xi for any given x−i, the set
of player i’s best-responses is in bd(conv(X i)).

4.3 Equilibrium Inequalities

Cutting plane methods are attractive tools for integer programs, both theoretical and applied
perspectives. The essential idea is to iteratively refine a relaxation of the original problem
by cutting off fractional solutions via valid inequalities for the integer program’s perfect
formulation. Nevertheless, in an IPG where the solution paradigm is the Nash equilibrium, we
argue there exist stronger families of cuts, yet, not necessarily valid for each player’s perfect
formulation conv(X i). In fact, for any player i, some of its best-responses in ext(conv(X i))
may never appear in a PNE , since no equilibrium strategies of i’s opponents induce i to play
such best-responses. Here we introduce a general class of inequalities to characterize the
nature of conv(N ). Such inequalities play a pivotal role in the cutting plane algorithm of
Section 4.4.

Dominance and Rationality. We ground our reasoning in the concepts of rationality
and dominance [14, 121]. Given two strategies x̄i ∈ X i and x̂i ∈ X i for i, x̄i is strictly
dominated by x̂ if, for any choice of opponents strategies x−i, then ui(x̂, x−i) > ui(x̄, x−i).
Then, a rational player will never play dominated strategies. This also implies no i would
play any strategy in int(conv(X i)). Since dominated strategies – by definition – are never
best-responses, they will never be part of any PNE . In Example 2, the set X 2 is made of 3
strategies (x2

1, x2
2) = (0, 0), (1, 0), (0, 1). Yet, (x2

1, x2
2) = (0, 0) is dominated by (x2

1, x2
2) = (0, 1),

and the latter is dominated by (x2
1, x2

2) = (1, 0). However, when considering player 1, we need
the assumption of common knowledge of rationality to conclude which strategy it will play.
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Player 1 needs to know that player 2 would never play x2
2 = 1 to declare (x1

1, x1
2) = (0, 1) being

dominated by (x1
1, x1

2) = (1, 0). When searching for a PNE in this example, it follows that
N 1 = {(x1

1, x1
2) = (1, 0)} and N 2 = {(x2

1, x2
2) = (1, 0)}. This inductive (and iterative) process

of removal of strictly dominated strategies is known as the iterated elimination of dominated
strategies (IEDS). This process produces tighter sets of strategies, and never excludes any
PNE from the game [142, Ch.4].

Example 2. Consider the IPG where player 1 solves maxx1{6x1
1 + x1

2 − 4x1
1x

2
1 + 3x1

2x
2
2 :

3x1
1 + 2x1

2 ≤ 4, x1 ∈ {0, 1}2}, and player 2 solves maxx2{4x2
1 + 2x2

2−x2
1x

1
1−x2

2x
1
2 : 3x2

1 + 2x2
2 ≤

4, x2 ∈ {0, 1}2}. The only PNE is (x̄1
1, x̄1

2) = (1, 0), (x̄2
1, x̄2

2) = (1, 0) with a welfare of S(x̄) = 5,
u1(x̄1, x̄2) = 2, and u2(x̄2, x̄1) = 3.

In the same fashion of IEDS , we propose a family of inequalities that cuts off – from each
player’s feasible set – the strategies that never appear in a PNE . Thus, from an IPG instance
G, we aim to derive an instance G′ where N i replaces each player’s feasible set X i. Note that,
since all X i are finite sets, all N i are finite as well as the number of PNEs.

4.3.1 A Lifted Space

Given the social welfare S(x), we aim to find the PNE maximizing it, namely we aim to
perform equilibria selection. In this context, the first urgent question is what space should
we work in. Since PNEs are defined by mutually optimal strategies, a natural choice is to
consider a space of all players’ variables x. In our framework, we assume the existence of
a higher-dimensional (lifted) space where we linearize the non-linear terms in any ui(·) via
auxiliary variables z and corresponding constraints (e.g., [137, 143]). Although our scheme
holds for an arbitrary f(x) : ∏n

i=1X i → R we can linearize to f(x, z), we focus on S(x)
and the corresponding higher-dimensional S(x, z) defined in the lifted space. In (4.2) we
describe this lifted space, where L is the set of linear constraints necessary to linearize the
non-linear terms and includes integer requirements and bounds on the z variables. Any
vector x1, . . . , xn, z in (4.2) corresponds to a unique strategy profile x = (x1, . . . , xn), since
x induces z. K is then a set defined by linear constraints and integer requirements, and
thus it is reasonable to deal with conv(K) and some of its projections. For brevity, let
projx conv(K) = {x = (x1, . . . , xn) : ∃z s.t. (x1, . . . , xn, z) ∈ conv(K)}, and let ui(xi, x−i)
include the z variables when working in the space of conv(K).

K = {(x1, . . . , xn, z) ∈ L, xi ∈ X i for any i = 1, . . . , n}. (4.2)
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Equilibrium Inequalities. The integer points in projx(conv(K)) encompass all the
game’s strategy profiles. However, we need to focus on the polyhedron E = {(x1, . . . , xn, z) ∈
conv(K) : (x1, . . . , xn) ∈ conv(N )}, since projecting out z yields the convex hull of PNE
profiles conv(N ). Note that, by definition, E is a polyhedron (since the definition of L), and
projxi(E) = conv(N i). The role of E is similar to the one of a perfect formulation for an
integer program. As optimizing a linear function over a perfect formulation results in an
integer optimum, optimizing a linear function S(x, z) over E results in a PNE . We define E
as the perfect equilibrium formulation for G. Also, the equivalent of the integrality gap in
integer programming is the PoS , namely the ratio between the optimal value of f(x, z) over
conv(K) and E . All considered, we establish the concept of equilibrium inequality, a valid
inequality for E .

Definition 5 (Equilibrium Inequality). Consider an IPG instance G. An inequality is an
equilibrium inequality for G if it is a valid inequality for E.

A Class of Equilibrium Inequalities. We introduce a generic class of equilibrium
inequalities that are linear in the space of conv(K). Consider any strategy x̃i ∈ X i for i: for
any i’s opponents’ strategy x−i, ui(x̃i, x−i) provides a lower bound on i’s payoff since x̃i ∈ X i

(i.e., is a feasible point). Then, ui(x̃i, x−i) ≤ ui(xi, x−i) holds for every player i. We introduce
such inequalities in Proposition 1.

Proposition 1. Consider an IPG instance G. For any player i and x̃i ∈ X i, the inequality
ui(x̃i, x−i) ≤ ui(xi, x−i) is an equilibrium inequality.

Proof. If a point (x̄, z̄) ∈ E , then x̄ ∈ conv(N ). First, consider the case where x̄ ∈
ext(conv(N )), namely x̄ ∈ N by definition. Assume (x̄, z̄) violates the inequality asso-
ciated with at least a player i, then, ui(x̃i, x̄−i) > ui(x̄i, x̄−i). Therefore, i can profitably
deviate from x̄i to x̃i under x̄−i, which contradicts x̄ ∈ N and (x̄, z̄) ∈ E . Thus, no point
(x̄, z̄) ∈ E with x̄ ∈ ext(conv(N )) violates the inequality. Since we can represent any point
(x̄, z̄) ∈ E as a convex combination of the extreme points of conv(N ), the proposition holds
by iterating the previous reasoning for each extreme point in the support of (x̄, z̄).

A fundamental issue is whether the inequalities of Proposition 1 are sufficient to define the
set E . By modulating the concept of closure introduced by Chvátal [37], we prove this is
indeed the case. We define the equilibrium closure as the points in conv(K) satisfying the
equilibrium inequalities of Proposition 1.
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Theorem 1. Consider an IPG instance G where |N | ̸= 0. Let the equilibrium closure of
conv(K) for the set of equilibrium inequalities in Proposition 1 be

P e :=

(x, z) ∈ conv(K)

∣∣∣∣∣∣ ui(x̃i, x−i) ≤ ui(xi, x−i)
∀x̃ : x̃i ∈ BR(i, x̃−i), i = 1, . . . , n

 ,

where the equilibrium inequalities consider only the best-responses x̃i for any player i. Then,
(i.) P e is a rational polyhedron, (ii.) int(P e) contains no points (x̄, z̄) : x̄ ∈ Znm, (iii.) P e = E .

Proof. Proof of (i.) Since X i is finite for any i, the number of best-responses (and corre-
spondingly, of equilibrium inequalities) is finite. Also, conv(K) is a rational polyhedron, and
any equilibrium inequality has integer coefficients. It follows that P e is a rational polyhedron.
Proof of (ii.) Assume there exists a (x̄, z̄) ∈ int(P e) so that x̄ ∈ Znm. Then, x̄ ∈ N by
definition of Nash equilibrium. However, since x̄ ∈ int(P e), then no equilibrium inequality
is tight, contradicting the fact x̄ is a PNE . This implies all PNEs lie on the boundary of
P e. Proof of (iii.) The inequalities defining P e are equilibrium inequalities, then any
(x̄, z̄) ∈ E belongs to P e, implying E ⊆ P e. However, since all PNEs are on the boundary of
P e, P e ⊆ conv(K) and E ⊆ conv(K), we necessarily must have P e = E .

4.4 The Cutting Plane Algorithm and its Oracle

If an oracle gives us E through a set of linear inequalities, then an optimal solution to
maxx1,...,xn,z{f(x, z) : (x, z) ∈ E} (i.e., a linear program) that is also an extreme point of E is
a PNE for G for any linear function f(x, z) (thus for S(x, z)). However, there are two major
issues. First, E ⊆ conv(K), and conv(K) is a perfect formulation described by a possibily
large number of inequalities. Second, even if an oracle provides conv(K), retrieving E through
Theorem 1 may still require a large number of inequalities. In practice, we actually do not
need E nor conv(K): a more reasonable goal is to get a polyhedron containing conv(K) over
which we can optimize f(x, z) efficiently (i.e., with a linear program) and obtain an integer
solution that is also a PNE . The first challenge is to obtain an integer solution: yet, we
could deploy known families of integer programming cutting planes (they are also equilibrium
inequalities as they are valid for E) and branching schemes. Equivalently, we exploit a
Mixed-Integer Programming (MIP) solver to solve maxx1,...,xn,z{f(x, z) : (x, z) ∈ K}. Once
the maximizer fulfills the integrality requirements, we are done if it is also a PNE . Otherwise,
the second challenge is to cut off such maximizer, since it is not a PNE , by separating at least
an equilibrium inequality from Proposition 1.
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Equilibrium Separation Oracle. Given an integer point (x̃, z̃) ∈ conv(K) (i.e., the
point returned by the MIP solver), the central question is to decide if x̃ ∈ N , and, if not, to
derive an equilibrium inequality to cut off (x̃, z̃). If we use the equilibrium inequalities from
Proposition 1, the process terminates in a finite number of iterations, since Theorem 1. In
the spirit of [81, 91], we define a separation oracle for the equilibrium inequalities and E . The
equilibrium separation oracle solves the equilibrium separation problem of Definition 6.

Definition 6 (Equilibrium Separation Problem). Consider an IPG instance G. Given a point
(x̄, z̄), the equilibrium separation problem is the task of determining that either: (i.) (x̄, z̄) ∈ E ,
or (ii.) (x̄, z̄) /∈ E and return an equilibrium inequality violated by (x̄, z̄).

Algorithm 1 presents our separation oracle for the inequalities of Proposition 1. Given (x̄, z̄)
and an empty set of linear inequalities ϕ, the algorithm outputs either yes if (x̄, z̄) ∈ E ,
or no and adds in ϕ some inequalities violated by (x̄, z̄). The algorithm separates at most
one inequality for any player i. Note that x̄i should be a best-response to be in a PNE .
Then, we solve maxxi{ui(xi, x̄−i) : Aixi ≤ bi, xi ∈ Zm}, where x̂i is one of its maximizers. If
ui(x̄i, x̄−i) = ui(x̂i, x̄−i), then x̄i is also a best-response. However, if ui(x̂i, x̄−i) > ui(x̄i, x̄−i),
the algorithm adds to ϕ an equilibrium inequality ui(x̂i, x−i) ≤ ui(xi, x−i) violated by (x̄, z̄).
After considering all players, if |ϕ| = 0, then x̄ is by definition a PNE and the answer is yes.
Otherwise, the algorithm returns no and ϕ ̸= ∅, i.e., at least an equilibrium inequality cutting
off (x̄, z̄).

Algorithm 1: Equilibrium Separation Oracle
Data: An IPG instance G, a point (x̄, z̄), and a set of cuts ϕ = ∅.
Result: Either: (i.) yes if (x̄, z̄) ∈ E , or (ii.) no and ϕ.

1 for i← 1 to n do
2 x̂i ← maxxi{ui(xi, x̄−i) : Aixi ≤ bi, xi ∈ Zm} ;
3 if ui(x̂i, x̄−i) > ui(x̄i, x̄−i) then
4 Add ui(x̂i, x−i) ≤ ui(xi, x−i) to ϕ;

5 if |ϕ| = 0 then return yes ;
6 else return no and ϕ ;

ZERO Regrets. We present our cutting plane algorithm ZERO Regrets in Algorithm 2.
The inputs are an instance G, and (a linearizable) f(x), while the output is either the PNE ẍ

maximizing f(x), or a certificate that no PNE exists. Let Φ be a set of equilibrium inequalities,
and Q = maxx1,...,xn,z{f(x, z) : (x, z) ∈ K, (x, z) s.t. Φ}. We assume Q is feasible and bounded
(otherwise, there is no point in getting a PNE with an arbitrarily bad welfare). At each
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iteration, we compute an optimal solution (x̄, z̄) of Q. Then, the equilibrium separation
oracle (Algorithm 1) evaluates such solution: if the oracle returns yes, then ẍ = x̄ is the
PNE maximizing f(x) in G. Otherwise, the oracle returns a set ϕ of equilibrium inequalities
cutting off (x̄, z̄), and the algorithm adds ϕ to Φ. Therefore, the process restarts by solving
Q with the additional set of constraints. If at any iteration Q becomes infeasible, then G has
no PNE . Theorem 1 implies both correctness and finite termination of Algorithm 2.

Algorithm 2: ZERO Regrets
Data: An IPG instance G, and a function f(x).
Result: Either: (i.) the PNE ẍ maximizing f(x), or (ii.) no PNE

1 Φ = {0 ≤ 1}, and Q = maxx1,...,xn,z{f(x, z) : (x, z) ∈ K, (x, z) s.t. Φ};
2 while true do
3 if Q is infeasible then return no PNE ;
4 (x̄, z̄) = arg maxQ; ϕ = ∅ ;
5 if EquilibriumSeparationOracle(G, (x̄, z̄), ϕ) is yes then
6 return ẍ = x̄;

7 else add ϕ to Φ ;

In Example 3, we provide a toy example to show the rationale of ZERO Regrets.

Example 3. Consider the Knapsack Game instance of Example 1 where player 1 solves
maxx1{6x1

1 +x1
2−4x1

1x
2
1 +3x1

2x
2
2 : 3x1

1 +2x1
2 ≤ 4, x1 ∈ {0, 1}2}, and player 2 solves maxx2{4x2

1 +
2x2

2 − x2
1x

1
1 − x2

2x
1
2 : 3x2

1 + 2x2
2 ≤ 4, x2 ∈ {0, 1}2}. To linearize the players’ utility functions, a

viable option is to introduce the binary variables z1
i , z2

i , z12
i equal to 1 if only Player 1 selects

item i, only Player 2 selects item i or both players select item i, respectively. For i = 1, 2, the
variables x1

i and x2
i are linked with the additional z variables by the constraints x1

i = z1
i + z12

i ,
x2

i = z2
i + z12

i , with z1
i + z2

i + z12
i ≤ 1. Thus, player 1’s utility function is 6x1

1 + x1
2− 4z12

1 + 3z12
2

and player 2’s utility function is 4x2
1 +2x2

2−z12
1 −z12

2 . Correspondingly, problem Q maximizing
the social welfare is

max 6x1
1 + x1

2 + 4x2
1 + 2x2

2 − 5z12
1 + 2z12

2

3x1
1 + 2x1

2 ≤ 4, 3x2
1 + 2x2

2 ≤ 4

x1
i = z1

i + z12
i , x2

i = z2
i + z12

i , z1
i + z2

i + z12
i ≤ 1 i = 1, 2.

x1
i , x2

i , z1
i , z2

i , z12
i ∈ {0, 1} i = 1, 2.

An optimal solution of the problem is (x̄1
1, x̄1

2) = (1, 0), (x̄2
1, x̄2

2) = (0, 1) (we do not report the z

values for conciseness). The social welfare is 8 and the utility values are 6 and 2, respectively.
However, this solution is not a PNE. In fact, while the best-response to x̄2 for player 1 is x̄1,
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the best-response to x̄1 for player 2 is (x̂2
1, x̂2

2) = (1, 0) with an utility value of 3. Therefore,
from player 2, we derive the equilibrium inequality

4− x1
1 ≤ 4x2

1 + 2x2
2 − z12

1 − z12
2

cutting off x̄. The left-hand side of the inequality represents u2(x̂2, x1), namely player 2’s
utility function 4x2

1 + 2x2
2 − x2

1x
1
1 − x2

2x
1
2 with x2 = x̂2. The right-hand side of the inequality

represents u2(x2, x1), namely player 2’s utility function linearized in the lifted space. By adding
the equilibrium inequality to Q, the optimal solution is then (x̄1

1, x̄1
2) = (1, 0), (x̄2

1, x̄2
2) = (1, 0)

with utility values 2 and 3 and a welfare of 5. Since x̄ is a PNE, the algorithm terminates.

Game-theoretical Interpretation. We provide a straightforward game-theoretical in-
terpretation of ZERO Regrets. The algorithm acts as a central authority (i.e., a central
planner) when optimizing f(x, z) over K, meaning that it produces a solution that optimizes
the welfare. Afterward, it proposes the solution to each player, who evaluates it through the
equilibrium separation oracle. The latter acts as a rationality blackbox, in the sense that it
advises each player i whether the proposed strategy is acceptable or not. In other words, the
rationality blackbox tells the player i if it should selfishly (and rationally) deviate to a better
strategy, ignoring the central authority advice. On the one hand, if the rationality blackbox
says the solution is acceptable for player i, then the player knows (through the oracle) it
should accept the proposed strategy. On the other hand, if at least one player i refuses the
proposed solution, the central authority should exclude such a solution and formulate a new
proposal. Namely, it should cut off the non-equilibrium strategy and compute a new solution.

Some Remarks. We conclude with some further considerations on ZERO Regrets. First,
it is sufficient to add just one equilibrium inequality in ϕ to cut off a given solution (x̄, z̄).
However, we expect a good trade-off between |ϕ| = 1 and |ϕ| = n may speed up the algorithm’s
convergence. Second, we can modify Algorithm 2 to enumerate all PNEs in N as follows. In
Step 6, instead of terminating and returning ẍ, we memorize ẍ and add an (invalid) inequality
cutting off (x̄, z̄) from E . Since all x are integers, such inequality can be, for instance, a
classical hamming distance from x̄. The algorithm will eventually cut off any PNE until Q
becomes infeasible. Third, ZERO Regrets can compute approximate PNEs, i.e., when each
player can deviate at most by a small ϵ with respect to a best-response [118]. Approximate
PNEs may be a reasonable compromise in games where no PNE exists. W.l.o.g, if ϵ is integer,
we can adapt Algorithm 1 to separate ϵ-equilibrium inequalities ui(x̂i, x−i)− ϵ ≤ ui(xi, x−i),
without affecting the correctness of Algorithm 2 (yet returning an ϵ-equilibrium).
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4.5 Knapsack and Network Formation Games

We evaluate ZERO Regrets for the task of selecting equilibria with maximum welfare on two
well-known classes of games. Specifically, we consider the Knapsack Game [27, 32, 33] – for
which we also provide further theoretical results – and the Network Formation Game [5, 35].

4.5.1 Knapsack Game

The Knapsack Game (KPG) is an IPG among n players, where each i solves the a binary
knapsack problem [92] with m items as

max
xi

{ m∑
j=1

pi
jx

i
j +

n∑
k=1,k ̸=i

m∑
j=1

Ci
k,jx

i
jx

k
j :

m∑
j=1

wi
jx

i
j ≤ bi, xi ∈ {0, 1}m

}
. (4.3)

As in the classical knapsack problem, we assume that the profits pi
j , weights wi

j and capacities
bi are in Z+

0 . The selection of an item j by a player k ̸= i impacts either negatively or
positively the item profit for player i through integer coefficients Ci

k,j. Clearly, given the
strategies of the other players x−i, computing a corresponding best-response for player i is
NP-hard. [27] introduced the game with n = 2 and pi

j = 0 ∀j = 1, . . . , m, i = 1, 2. [32, 33]
consider a more general game variant (pi

j and wi
j in Z) and provided algorithms to compute

mixed-strategy Nash equilibria, yet the focus was not on PNEs nor on equilibria selection.
We can straightforwardly apply our algorithmic framework to the KPG in (4.3), since we
can linearize the bilinear products xi

jx
k
j (for any i, k, j) with O(mn2) auxiliary variables and

additional constraints. We claim the KPG can be extremely difficult to solve even with two
players: in Theorem 2, we prove that deciding if a KPG instance has a PNE– even with n = 2
– is Σp

2-complete in the polynomial hierarchy, matching the result of [32] for general IPGs.
Also, we show that when at least one PNE exists, the PoS and PoA can be arbitrarily bad.

Theorem 2. Deciding if a KPG instance has a PNE is a Σp
2-complete problem.

We perform a reduction from the DeNegre Bilevel Knapsack Problem (BKP ) below, which is
Σp

2-complete [25].

Definition 7 (BKP). Given two m-dimensional non-negative integer vectors a and b and
two non-negative integers A and B, the BKP asks whether there exists a binary vector x –
with ∑m

j=1 ajxj ≤ A – satisfying ∑m
j=1 bjyj(1− xj) ≤ B − 1 for any binary vector y such that∑m

j=1 bjyj ≤ B.

Without loss of generality, we assume aj ≤ A for any j. If this is not the case, we can always
modify the original BKP instance as follows: (i.) we replace A with 2A + 1, any aj ≤ A
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with 2aj, and any aj > A with (2A + 1), and (ii.) we add a new element m + 1 (i.e., new
item), with am+1 = 1 and bm+1 = B. In any solution of this modified instance, we must have
xm+1 = 1, otherwise ∑m+1

j=1 bjyj(1−xj) ≤ B−1 would never hold since ∑m+1
j=1 bjyj(1−xj) = B

when xm+1 = 0 and ym+1 = 1. Setting xm+1 = 1 gives a residual capacity 2A for the packing
constraint of x. Indeed, every subset of x variables with original aj ≤ A that was satisfying∑m

j=1 ajxj ≤ A now satisfies ∑m
j=1 2ajxj ≤ 2A. On the contrary, we cannot select any xj

variable with original aj > A. Thus, a solution (if any) to the original instance corresponds
to a solution to the modified instance, and vice versa.

Proof. First, note that deciding if KPG admits a PNE is in Σp
2, as we ask whether there is a

strategy profile where every player cannot improve its payoff with any of its strategies, and
we can compute the payoff of such strategies in polynomial time. Given a BKP instance, we
construct a KPG instance with 2 players as follows. We consider m + 1 items and associate
the elements of vectors x and y with the first m elements of vectors x1 and x2, respectively.
Player 1 solves the problem in (4.4), whereas player 2 solves the problem in (4.5).

max
x1
{

m∑
j=1

bjx
1
jx

2
j + x1

m+1x
2
m+1 :

m∑
j=1

ajx
1
j ≤ A, x1 ∈ {0, 1}m+1} (4.4)

max
x2
{(B − 1)x2

m+1 +
m∑

j=1
bjx

2
j −

m∑
j=1

bjx
2
jx

1
j :

m∑
j=1

bjx
2
j + Bx2

m+1 ≤ B, x2 ∈ {0, 1}m+1} (4.5)

We need to show that the KPG instance has a PNE if and only if the corresponding BKP

instance has a solution.

BKP has a solution. We assume the BKP instance has a solution x. We prove that
x̂1 = (x, 1), x̂2 = (0, 1) (with 0 being an m-dimensional vector of zeros) is a PNE . First, both
the strategies x̂1 and x̂2 are feasible by construction. Given x̂2, player 1 attains the maximum
payoff of 1 by playing strategy x̂1. The strategy x̂2 yields a payoff of B − 1 for player 2 when
player 1 plays x̂1. Player 2 cannot profitably deviate by setting x2

m+1 = 0. This follows from
the fact that the BKP instance has a solution x and, given that x̂1

j = xj for j = 1, . . . , m,
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the following inequality must hold

m∑
j=1

bjx
2
j −

m∑
j=1

bjx
2
j x̂

1
j ≤ B − 1.

Thus, the pair of strategies (x̂1, x̂2) is also a PNE for the KPG instance.

BKP has not a solution. If the BKP instance has not a solution, player 2 never plays
x2

m+1 = 1 in a best-response, as it can always obtain a payoff of B with variables x2
1, . . . , x2

m

for any player 1’s feasible strategy. Consider any player 2’s best-response x̂2, with x̂2
m+1 = 0,

and assume the KPG instance has a PNE (x̂1, x̂2). Then, in the player 1’s best-response x̂1,
there exists at least one x̂1

j = 1 when x̂2
j = 1 and bj > 0 (since aj ≤ A for any j). However, in

this case, player 2 would deviate from x̂2, since x̂2 gives a payoff < B under x̂1. Thus, no
PNE exists in the KPG instance.

Proposition 2. The PoA and the PoS in KPG can be arbitrarily bad.

Proof. Consider the following KPG instance with n = 2: i = 1 solves the problem maxx1{Mx1
1+

x1
2 − (M − 2)x1

1x
2
1 − x1

2x
2
2 : 3x1

1 + 2x1
2 ≤ 4, x1 ∈ {0, 1}2} where M is an arbitrarily large value;

i = 2 solves maxx2{4x2
1 + x2

2 − x2
1x

1
1 − x2

2x
1
2 : 3x2

1 + 2x2
2 ≤ 4, x2 ∈ {0, 1}2}. The only PNE

is (x̄1
1, x̄1

2, x̄2
1, x̄2

2) = (1, 0, 1, 0), with u1(x̄1, x̄2) = 2, u2(x̄2, x̄1) = 3, S(x̄) = 5. The maximum
welfare OSW = M + 1 is given by (x̂1

1, x̂1
2, x̂2

1, x̂2
2) = (1, 0, 0, 1), i.e. OSW is arbitrarily large

and there are no bounds on both the PoA and the PoS .

4.5.2 Network Formation Game

Network design games are paradigmatic problems in Algorithmic Game Theory [5, 35, 118].
We consider a Network Formation Game (NFG) where n players are interested in building
a network. Let G(V, E) be a directed graph representing a network layout, where V , E

are the sets of vertices and edges, respectively. Each edge (h, l) ∈ E has a construction
cost chl ∈ Z+, and each player i wants to connect an origin si with a destination ti while
minimizing its construction costs. A cost-sharing mechanism determines the cost of each
edge ci

hl(x) for i as a function of the number of players crossing (h, l). A commonly adopted
mechanism is the Shapley cost-sharing mechanism, where players using (h, l) equally share
its cost chl. The goal is to find a PNE (if any) minimizing the sum of construction costs for
each player. Although the NFG with Shapley cost-sharing mechanism is a potential game
(i.e., best-response dynamics always converge, and there is always a PNE), selecting the best
PNE is an NP-hard problem [5]. We model the NFG as an IPG as follows. For any player
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i and edge (h, l), let the binary variables xi
hl be 1 if i uses the edge. We use classical flow

constraints modeling a path between si and ti. For conciseness, we represent these constraints
and binary requirements with a set F i for each i. Thus, each i solves

min
xi
{
∑

(h,l)∈E

chlx
i
hl∑n

k=1 xk
hl

: xi ∈ F i}. (4.6)

In this formulation, we assume that if ∑n
k=1 xk

hl = 0, then the fraction is equal to 0. For
any i, the cost contribution of each edge (h, l) to the objective is not linear in x, yet we
can linearize it. For instance, consider a game with n = 3 and the objective of i = 1.
Let the binary variable zj,...,k

hl be 1 if only players j, . . . , k select the edge (h, l). Then,
x1

hl = z1
hl + z12

hl + z13
hl + z123

hl , x2
hl = z2

hl + z12
hl + z23

hl + z123
hl , x3

hl = z3
hl + z13

hl + z23
hl + z123

hl , and the
clique z1

hl + z2
hl + z3

hl + z12
hl + z13

hl + z23
hl + z123

hl ≤ 1. The term for edge (h, l) in the objective
of i = 1 is then chlz

1
hl + chl

2 (z12
hl + z13

hl ) + chl

3 z123
hl . In our tests, we also model the general

weighted NFG [35], where each i has a weight wi, and the cost share of each selected (h, l) is
wichl divided by the weights of all players using (h, l). Specifically, we consider the 3-player
weighted NFG, where a PNE may not exist [5, 35].

4.6 Computational Tests

We performed our tests on an Intel Xeon Gold 6142, with 128GB of RAM and with Gurobi

9.2 as MIP solver for Algorithm 2 and to compute OSW . The time-limit for ZERO Regrets
is 1800 seconds.

Knapsack Game. We generate KPG instances with n = 2, 3 and m = 25, 50, 75, 100.
In any instance, for any i, pi

j and wi
j are random integers uniformly distributed in [1, 100].

We consider three values for the knapsack capacity bi equal to 0.2∑m
j=1 wi

j, 0.5∑m
j=1 wi

j,
0.8∑m

j=1 wi
j, respectively. We consider three different distributions for the integer interaction

coefficients Ci
k,j. For any i, they can be: a) equal and uniformly distributed in [1, 100], or

b) random and uniformly distributed in [1, 100], or c) random and uniformly distributed
in [−100, 100]. In Table 4.1, we present the results for the 72 instances. For any given
number of players n, items m and distribution of coefficients Ci

k,j ((n, m, d)), we report the
performance over 3 instances with different capacity distributions, in terms of average number
of equilibrium inequalities added (#EI ), average computational time (Time), average PoS
(PoS) when we find the best PNE , number of time-limit hits (Tl). The averages #EI and
Time consider also the instances where we hit the time-limit. ZERO Regrets solves almost
all instances with n = 2, especially with distribution a. Both running times and number of
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equilibrium inequalities are generally limited. The PoS is generally low, and increases with
distribution c due to the complex interactions stemming from negative Ci

k,j. We remind that
a PoS close to 1 does not mean the instance is “easy”. On the contrary, a PoS ≈ 1 highlights
the existence of a high-quality PNE , with a welfare close to OSW . Thus, this result also
provides further evidence on the need of selecting such a PNE . With n = 3, ZERO Regrets
performs well when m < 75, and solves larger instances with distribution a. Previous works
consider up to m = 40 items with n = 3, and does not perform equilibria selection with
m > 4.

Network Formation Game. We consider the NFG with n = 3 on grid-based (directed)
graphs G(V, E), where each i has to cross the grid from left to right to reach its destinations.
Compared to a standard grid graph, we randomly add some edges between adjacent layers
to increase the number of paths. The instances are so that |V | ∈ [50, 500], and the costs
chl for each edge (h, l) are random integers uniformly distributed in [20, 100]. We consider
three distributions of player’s weights: (i.) the Shapely-mechanism, with w1 = w2 = w3 = 1,
or (ii.) w1 = 0.6, w2 = 0.2, and w3 = 0.2, or (iii.) w1 = 0.45, w2 = 0.45, and w3 = 0.1.
Table 4.2 reports the results, where we average over the distributions of the players’ weights.
For each graph, the table reports the graph size (|V |, |E|), whereas the other columns have
the same meaning of the ones of Table 4.1. Similarly to the KPG, we effectively solve all the
instances but 3. Generally, the literature does not consider this problem from a practical
perspective but provides theoretical bounds on the PoS and PoA. Nevertheless, we can
compute high-quality PNEs even in large-size graphs (i.e., PoS ≈ 1), with a limited number
of equilibrium inequalities and modest running times.

Table 4.1 Results for KPG.

(n, m, d) #EI Time PoS Tl (n, m, d) #EI Time PoS Tl

(2, 25, a) 10.67 0.08 1.04 0 (3, 25, a) 17.33 0.79 1.01 0
(2, 25, b) 15.67 0.17 1.02 0 (3, 25, b) 29.67 1.36 1.02 0
(2, 25, c) 40.00 1.52 1.06 0 (3, 25, c) 157.33 640.02 1.26 1
(2, 50, a) 15.00 0.22 1.02 0 (3, 50, a) 67.00 115.06 1.02 0
(2, 50, b) 41.67 1.27 1.01 0 (3, 50, b) 182.00 627.30 1.01 1
(2, 50, c) 112.00 30.75 1.08 0 (3, 50, c) 193.67 1800.00 - 3
(2, 75, a) 45.33 2.55 1.00 0 (3, 75, a) 156.33 1267.78 1.01 2
(2, 75, b) 146.33 94.03 1.02 0 (3, 75, b) 297.33 1800.00 - 3
(2, 75, c) 242.67 636.72 1.07 1 (3, 75, c) 179.00 1800.00 - 3

(2, 100, a) 37.00 2.24 1.01 0 (3, 100, a) 156.33 1267.78 1.01 2
(2, 100, b) 188.00 234.44 1.01 0 (3, 100, b) 297.33 1800.00 - 3
(2, 100, c) 293.00 1215.17 1.05 2 (3, 100, c) 179.00 1800.00 - 3
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Table 4.2 Results for NFG.

(|V |, |E|) #EI Time PoS Tl (|V |, |E|)) #EI Time PoS Tl

(50, 99) 5.00 0.07 1.12 0 (300, 626) 20.33 6.52 1.00 0
(100, 206) 9.00 0.13 1.00 0 (350, 730) 20.67 6.70 1.00 0
(150, 308) 9.67 0.47 1.01 0 (400, 822) 302.00 654.73 1.01 1
(200, 416) 18.67 1.85 1.00 0 (450, 934) 492.00 1200.43 1.01 2
(250, 517) 68.67 51.55 1.02 0 (500, 1060) 40.33 104.80 1.00 0

With our results, we highlight there may exist high-quality PNEs (i.e, small PoS), and how
our theoretical and computational framework shows promising applications for selecting such
equilibria.
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CHAPTER 5 THE CUT-AND-PLAY ALGORITHM: COMPUTING NASH
EQUILIBRIA VIA OUTER APPROXIMATIONS

Authors: Margarida Carvalho, Gabriele Dragotto, Andrea Lodi and Sriram Sankaranarayanan1.

Abstract The concept of Nash equilibrium enlightens the structure of rational behavior in
multi-agent settings. However, the concept is as helpful as one may compute it efficiently.
We introduce the Cut-and-Play, an algorithm to compute Nash equilibria for a class of
non-cooperative simultaneous games where each player’s objective is linear in their variables
and bilinear in the other players’ variables. Using the rich theory of integer programming, we
alternate between constructing (i.) increasingly tighter outer approximations of the convex
hull of each player’s feasible set – by using branching and cutting plane methods – and
(ii.) increasingly better inner approximations of these hulls – by finding extreme points and
rays of the convex hulls. In particular, when these convex hulls are polyhedra, we prove
the correctness of our algorithm and leverage the mixed integer programming technology to
compute equilibria for a large class of games. Further, we integrate existing cutting plane
families inside the algorithm, significantly speeding up equilibria computation. We showcase
a set of extensive computational results for Integer Programming Games and simultaneous
games among bilevel leaders. In both cases, our framework outperforms the state-of-the-art
in computing time and solution quality.

5.1 Introduction

Game Theory and Mixed Integer Programming (MIP) – and some of their founding ideas –
fortuitously share a common root. As noted in [138], two critical contributions in the two
fields originated in Princeton and shared John Von Neumann as a common ancestor. On the
one hand, linear programming duality provides an elegant and essential component of MIP
theory and computations. On the other hand, the early development of Game Theory by Von
Neumann and Morgenstern served as an opener for a rigorous mathematical methodology to
model complex interactions among agents. Von Neumann brilliantly hinted at a beautiful
connection between the two fields – as George Dantzig explained in [48] – by intertwining linear
programming duality and zero-sum games. In a sense, the (ante litteram) game-theoretical
interpretation of duality for zero-sum games initiated a symbiosis between Mathematical
Programming and Game Theory. A few years later, Nash [116, 117] introduced – in his two

1A pre-print is available in [33].
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seminal doctoral papers – his solution approach for strategic behavior, namely the concept
of Nash equilibrium. Nash’s solution concept provides a stable solution, in the sense that
no “rational” and selfish agent would defer it and get a benefit in doing so. However, in
practical applications, the plausibility of the Nash equilibrium concept can only stem from
the availability of efficient tools to compute it.

In this paper, we further contribute to bridging the gap between MIP and Game Theory by
extending some of the algorithmic rationales of MIP to a family of games. We strongly believe
that improving the state-of-the-art techniques for equilibria computation may help extend
the broad family of problems involving typical Operations Research tasks – i.e., logistics,
scheduling, tactical decision-making – to a multi-agent setting. Recently, the MIP community
has been notably active in incorporating game dynamics into optimization frameworks.
Games can broaden the modeling capabilities of MIP , and extend classical combinatorial and
decision-making problems to multi-agent settings that can account for interactions among
multiple decision-makers. For instance, bilevel programming [13, 26, 72, 89, 94, 99]) and
Integer Programming Games (IPGs) [29, 32, 47, 57, 82, 95]. This recent research direction
suggests that the joint endeavor between game theory and MIP can widen their theoretical
understanding and practical impact.

RBGs. As a standard game-theoretic notation, let the operator (·)−i define (·) except
i; e.g., if x = (x1, . . . , xn), then x−2 = (x1, x3, . . . , xn). In this paper, we study the problem
of computing Nash equilibria – arguably the most notorious concept of stable solution for
strategic behavior – for Reciprocally-Bilinear Games (RBGs), a class of non-cooperative
simultaneous games among n players as in Definition 8.

Definition 8 (RBG). A Reciprocally-Bilinear Game (RBG) is a game among n players with
each player i = 1, 2, . . . , n solving the optimization problem

min
xi

(ci)⊤xi + (x−i)⊤Cixi (5.1a)

s.t. xi ∈ X i (5.1b)

where X i is a set (not necessarily closed), C and c are a matrix and a vector with integer
entries, respectively. An RBG is polyhedrally-representable if cl conv(X i) is a polyhedron for
each i, and one can optimize an arbitrary linear function on X i.

From the definition, the following properties hold for each player i: (i.) its objective function
is reciprocally-bilinear, namely, it is linear in its variables xi, and contains bilinear terms in xi
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and the other players’ variables x−i (ii.) its constraint set X i contains only the xi variables,
i.e., the interaction takes place at the objective level (i.e., the game is not a generalized Nash
equilibrium problem). Besides, we also assume that (i.) all players are rational, namely they
want to minimize their objective function, and (ii.) there is common knowledge of rationality
with complete information, namely each player i knows its optimization problem – as well as
the ones of the other players – and knows that every player is rational. We refer to X i as the
set of (pure) strategies of i, namely the set of actions i can adapt in the game. As we will
motivate later, the actual strategy set for each player is cl conv(X i), as it represents the set
of all (mixed) strategies the player can adopt. Finally, we assume cl conv(X i) is a polyhedron
in order to guarantee finite termination of our algorithms.

Contributions. In this work, we employ the rich theory of integer programming – for
instance, concepts such as relaxation, valid inequalities, disjunctive programming, branching
– and extend them to compute Nash equilibria for RBGs. Our approach is general, as it
does not exploit any game-specific structure besides the polyhedral representability of the
(mixed) strategy sets. Further, it stands on the shoulders of many giants: the theoretical and
practical apparatus of integer programming. We show the integration of such mathematical
programming tools – and specifically integer programming ones – has promising implications
in equilibria computation. Specifically, we start from the concept of outer approximation.
In MIP, one often exploits a series of increasingly tighter outer approximations – or (linear)
relaxations [101, 120]. However, a game’s approximation (e.g., when at least a player’s
optimization problem is outer approximated) does not possess the concept of bound when
the solution paradigm is the Nash equilibrium. In this paper, we establish an algorithmic
rationale to exploit the approximations of RBGs. We briefly summarize our contributions as
follows.

(i.) We introduce Cut-and-play (CnP), a general algorithm to find mixed-strategy Nash
equilibria (MNEs) for RBGs. The algorithm finds an equilibrium or provides a proof of
its non-existence by constructing increasingly tighter outer approximations of cl conv(X i)
for any player i. At every iteration, the CnP attempts to compute an equilibrium for an
“easier” approximated game, and eventually refines the approximation by using cutting
planes and branching.

(ii.) As a subroutine to the CnP, we introduce an Enhanced Separation Oracle (ESO) for
polyhedrally-representable sets. Given a point x̄ ∈ Rn and a set X ⊆ Rn, the ESO re-
turns either (i.) no and (π̄, π̄0) ∈ Rn×R such that π̄⊤x̄ > π̄0 with π̄⊤x ≤ π̄0 for all x ∈ X ,
or (ii.) yes, and v1, . . . , vu ∈ X , extreme rays r1, . . . , rp of cl conv(X ), α1, . . . , αu ∈ [0, 1]



41

and β1, . . . , βp ∈ R+ such that ∑u
k=1 αk = 1 and x̄ = ∑u

k=1 αkvk +∑p
j=1 βjr

j. The idea
grounds in the well-studied concept of separation oracle [19, 38, 71, 81, 91, 120], and
the implementation we provide overcomes the computational issues associated with the
ellipsoid algorithm. From a game-theoretic perspective, given a point σ̃i ∈ cl conv(X i),
the ESO returns the pure strategies that player i plays in σ̃i with their associated
probabilities.

(iii.) We provide extensive computational results on IPGs and Nash games Among Stackelberg
Players (NASPs) [31]. In both cases, our work improves the state-of-the-art algorithms
in computing time and solution quality (given a quality’s measure). Moreover, in IPGs,
we show how MIP cutting planes reduce the number of CnP iterations and significantly
improve convergence.

Outline. Section 5.2 provides a literature overview and the necessary background definitions
from Game Theory, Optimization, and MIP. Section 5.3 presents our CnP algorithm. As
a sine qua non component, Section 5.4 introduces the ESO, which separates a given point
from the (unknown) set of mixed strategies. Section 5.4.1 introduces an implementation of
the ESO, and weighs up some practical aspects concerning the algorithmic implementation.
Section 5.5 presents the two main applications of the algorithm, namely IPGs and NASPs,
and tailors some components of the algorithmic approach to the two families of games. Finally,
Section 5.6 showcases a comprehensive set of computational results.

5.2 Related literature and background

Nash Equilibrium. We employ the standard concept of Nash Equilibrium [116, 117] as
solution concept. For any given RBG instance, we aim to find an equilibrium or show that
none exists. When there is only one player – namely n = 1 – the game becomes trivial, and
its equilibrium collapses to the solution of a single optimization problem. However, when
multiple agents are simultaneously deciding, the notion of Nash equilibrium becomes essential.
At any equilibrium point, no player can unilaterally deviate from the equilibrium point and
improve its payoff. In general, the equilibrium may map a probability distribution over every
player’s set of pure strategies. The pure strategies contributing to the equilibrium with a
positive probability build the so-called support of the equilibrium. In general, we will refer to
an equilibrium as a mixed-strategy Nash Equilibrium (MNE). However, when the support is
a singleton, we refer to it as a pure-strategy Nash Equilibrium (PNE).
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Nash [117] proves the existence of MNE for finite games, while the renowned contribution of
Daskalakis et al. [49] show the task of computing an MNE for such games is PPAD-complete.
For what concerns continuous games – namely when the set of strategies is infinite – Glicksberg
[78] establishes the existence of MNEs whenever the strategy spaces are compact and utilities
continuous. Stein et al. [140] prove that for all the MNEs in separable games – namely where
players’ payoffs take a sum-of-products form – there is a payoff equivalent MNE of finite
support. Carvalho et al. [29, 32] focus on IPGs, where each player strategy set is defined by
inequalities and integrality requirements. They point out that the problem of deciding if an
IPG has an MNE– or even a PNE– is Σp

2-complete. However, whenever the feasible region
of each player is nonempty and bounded, the IPG always has an MNE . Similarly, Carvalho
et al. [31] proves that deciding if a NASP has a PNE– or analogously an MNE– is Σp

2-hard.
Further, they prove there is always an MNE if the players’ feasible regions are nonempty and
bounded. In both IPGs and NASPs, an MNE may not exist if one or more players have an
unbounded action space.

Computing equilibria. A significant segment of the algorithmic approaches for Nash equi-
libria computation focuses on finite games, namely games represented in normal-form (i.e., the
input are matrices of payoffs for all possible game’s outcomes). The first family of algorithms
is the one of complementarity-based methods. Historically, the first contribution to this family
– and in general to the task of equilibria computation – is the Lemke-Howson algorithm, a path
following algorithm which works for any 2-player finite (i.e., finitely many strategies, players
and outcomes) game [102]. The algorithm has a strong geometrical interpretation since it
represents the game with a polytope for each player and pivots among its vertices until it
reaches an equilibrium vertex. Rosenmüller [127], Wilson [146] extended the Lemke-Howson
algorithm for n-player games. However, such methods require the solution of a series of
non-linear equation systems. The second family is the one of homotopy-based algorithms.
Scarf [135] proposed a simplicial subdivision algorithm, where the equilibrium is then the
fixed point over the product of unit simplices describing the strategy space of each player.
Finally, a third family of approaches is the one of support enumeration algorithms. Given a
2-player game, this class of algorithms builds a linear system of equations and inequalities to
determine if a given support (a subset of pure strategies) contains an equilibrium for the given
game. Following this idea, Sandholm et al. [133] find equilibria by formulating mixed-integer
programs, while Porter et al. [124] conceived a simple search algorithm that shows to be very
efficient in practice. The latter prioritizes the search towards equilibria of small and balanced
supports. A further refinement of their algorithm includes backtracking steps and an effective
pruning of strictly dominated pure strategies (i.e., strategies that will never be played from a
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rational agent).
However, in RBGs, X i is large and may be even uncountable, thus the use of the described
methodologies for finite games is rather impractical. Indeed, representing a game by enumer-
ating its possible outcomes may be challenging. This applies to any game represented by
each player optimization problem, for instance, games with a representation similar to the
one of RBGs. When each player optimization problem is convex in their decision variables,
a broadly studied family of algorithms is the one of equilibrium programming methods [63].
The equilibrium problem often reformulates as a non-linear complementarity problem or
an equivalent variational inequality. Compared to homotopy methods, the latter family of
methods does not guarantee global convergence [112]. Furthermore, several methodologies
address the non-convex cases. Carvalho et al. [32] introduce the Sampled Generation Method
(SGM ) for IPGs. At each iteration, the algorithm computes an equilibrium in a restricted
game (i.e., a game containing a subset of each player’s strategies). Then, if at least one player
can rationally improve its objective function by adopting a strategy outside the restricted
game, the algorithm discards the previously computed equilibrium and adds such strategy
to the next iteration’s restricted game. Each restricted game is represented in normal-form,
enabling the use of many of the methodologies described before. Cronert and Minner [47]
extend the SGM algorithm to better select candidate equilibria if more than one exist. More
recenrly, Dragotto and Scatamacchia [57] provide an efficient algorithm to compute and
enumerate PNEs in IPGs through integer programming formulations and valid inequalities.
Sagratella [130] introduces a branching method to enumerate all pure equilibria when payoffs
are convex and convex constraints along with integrality requirements on variables model the
strategy sets. Their approach is general and exploits a branching routine to handle integral
non-convexities.

5.2.1 Background and definitions

We employ some standard definitions from convex [20], polyhedral, [42] and complementarity
[46] theories. Given any set K ∈ Rk, we denote as cl(K), int(K), bd(K) the closure, interior,
and boundary of K. A face F for K is a non-empty closed convex set so that if x, y ∈ K,
and (αx + (1 − α)y) ∈ F for any α ∈ [0, 1], then x, y ∈ F . x ∈ K is an extreme point if it
cannot be expressed as a strict convex combination of two points in K, i.e., with 0 < α < 1.
A recession direction for K is a vector r ∈ Rk so that, for any x ∈ K, x + αr ∈ K for any
α ≥ 0. An extreme ray for K, or extreme recession direction, is a recession direction for K

that cannot be expressed as a convex combination of two or more other recession directions for
K. Given a closed convex set K̄ ∈ Rk, we denote as rec(K̄) and ext(K̄) the set of recession
directions and extreme points of K̄, respectively. Given two closed convex sets K̄1 ∈ Rk, and
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K̄2 ∈ Rk, we define as their Minkowski sums K̄1 + K̄2 as {x : x = k1 + k2, k1 ∈ K̄1, k2 ∈ K̄2}.
Depending on its structure, K̄ can be: (i.) a polyhedron if finitely many half-spaces generate
it, (ii.) a (closed) cone if for any k ∈ K̄ and positive α ∈ R, then αk ∈ K̄. Furthermore,
K̄ is convex if any convex combinations of points in K̄ still belongs to K̄. A polyhedral
cone is a special convex cone given by the conic hull of a finite set of recession directions,
i.e., applying the cone operator on a finite set. If K̄ is also bounded, Krein and Milman
proved that K̄ = conv(ext(K̄)). Should K̄ be a polyhedron (therefore possibly unbounded),
then the theorem is known as the Weyl theorem, and decomposes K̄ into the (Minkowsky)
sum of its extreme points V = ext(K̄) and the conic combination of its recession directions
R = rec(K̄), namely K̄ = conv(V ) + cone(R). This vertex-ray representation of a polyhedron
is also known as the V-polyhedral representation. A valid inequality for K̄ is an inequality of
the form π⊤x ≥ π0 holding for any x ∈ K̄, and it is supporting if there exists an x0 ∈ K̄ so
that π⊤x0 = π0, i.e., x0 is a boundary point for K̄, and the inequality is a face for K̄. We
define as separation oracle the blackbox solving the separation problem of Definition 9.

Definition 9 (Separation Problem). Given a closed convex set K̄, and a point x̄, either:
(i.) determine that x̄ ∈ K̄ and output yes, or (ii.) determine that x̄ /∈ K̄, and output no and
(π̄, π̄0) ∈ Rk × R, with π̄⊤x ≤ π̄0 being a valid inequality for any x ∈ K̄ while π̄⊤x̄ > π̄0 (i.e.,
a separating hyperplane).

Given K̄, we call a (polyhedral) set O as a (polyhedral) outer approximation of K̄ if K̄ ⊆ O.
Conversely, a (polyhedral) set I is a (polyhedral) inner approximation of K̄ if I ⊆ K̄. Let
x be a set of k variables, M a k × k matrix, and q a k-dimensional vector. We define as
(linear) complementarity constraint the expression 0 ≤ x ⊥ z = (Mx + q) ≥ 0, where the ⊥
operator serves the purpose of vector multiplication (e.g., x ⊥ z ≡ x⊤z = 0), and M and
q are a matrix and a vector of appropriate dimensions. A linear complementarity problem
(LCP) is the problem of finding a vector x such that 0 ≤ x ⊥ z = (Mx + q) ≥ 0, or show
that no such vector exist.

Games. We previously introduced the generic family of RBGs as simultaneous non-
cooperative games among n players satisfying Definition 8. In particular, many classes of
well-studied optimization problems are polyhedrally-representable: linear complementarity
problems (LCPs), MIP, linear bilevel programs and reverse convex programs all satisfy this
property [85, 86]. We provide some examples in Remark 1.

Remark 1. If any X i is either a polyhedron or a union of polyhedra, then cl conv(X i) is
polyhedral, and the game is polyhedrally-representable. Also, IPGs with reciprocally-bilinear
objectives are polyhedrally-representable. There are other polyhedrally-representable games as
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well: for example, let X i = {xi ∈ R3 : ((xi
1)2 + (xi

2)2 ≥ xi
3,−xi

3 ≤ xi
1, xi

2 ≤ xi
1, xi

3 ≥ 0}. This
set, despite being non-polyhedral, has a polyhedral convex-hull, cl conv(X i) = {−xi

3 ≤ xi
1, xi

2 ≤
xi

3, xi
3 ≥ 0}.

We denote the feasible set of player i as X i. We call any point xi ∈ X i a pure-strategy of player
i. When a player i randomizes over its pure-strategies X i, we obtain a so-called mixed-strategy.
More formally, σi is a mixed-strategy – or simply a strategy – for i if it is a probability
distribution over the pure strategies X i. Let ∆i denote the set of mixed strategies for i, namely
the space of probability distributions over X i. Furthermore, supp(σi) = {xi ∈ X i : σi(xi) > 0}
is the support of the mixed-strategy σi. We will refer to σi(xi) as the probability of playing xi

in σi = σi(xi)xi. Clearly, any mixed-strategy σi with a singleton support (e.g., | supp(σi)| = 1)
is a pure strategy. Given a player i, we denote with σ−i ∈ ∏n

j=1,i ̸=j ∆j the other players’
strategies, a probability distribution over the pure-strategies of i’s opponents. We will refer to
the objective function of i evaluated for x̂ = (x̂i, x̂−i) – namely f i(x̂i, x̂−i) – as the payoff of i

for a given pure strategy profile. Note that we slightly abuse the definition of payoff, since
all RBG players are in fact minimizing their objective functions. RBGs fall into the bigger
category of separable games (e.g., the objective functions are sums of polynomials), since the
players’ objectives are bilinear expressions. Hence, their MNEs all have finite supports or
finite support equivalents [140]. The expected payoff of player i for a given mixed-strategy
profile σ = (σ1, . . . , σn) is

E(f i(σi, σ−i)) = f i(σi, σ−i) = (ci)⊤σi + (σ−i)⊤Ciσi = (5.2)∑
xi∈supp(σi)

(ci)⊤xi · σi(xi) +
∑

x∈supp(σ)
(x−i · σ−i(x−i))⊤Cixi · σi(xi).

Equilibria. A strategy σ̄i is a best-response strategy for player i given (its opponents’
strategies) σ̄−i if f i(σ̄i, σ̄−i) ≤ f i(σ̂i, σ̄−i) for any other strategy σ̂i. A strategy profile σ̄ =
(σ̄1, . . . , σ̄n) is an MNE if, for each player i and strategy σ̃i ∈ ∆i, then f i(σ̄i, σ̄−i) ≤ f i(σ̃i, σ̄−i).
Any strategy xi in the support supp(σ̄i) of the MNE is a best-response strategy for i. In
other words, given an MNE σ̄, any i is indifferent among the pure-strategies in the support of
σi. This was formalized by Nash as in Theorem 3.

Theorem 3 (Equality of Payoffs [116, 117]). Assume σi is a (mixed) best-response for player
i given σ−i. Then, f i(σi, σ−i) = f i(xi, σ−i) for any xi ∈ supp(σi).

In Theorem 4, we generalize a theorem from Carvalho et al. [31]. With this result, we ground
the algorithmic rationale we present in this paper.
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Theorem 4. Consider two RBGs G and G̃ such that (i.) the objectives of player i in G and
G̃ are the same, and (ii.) the feasible set of player i in G is X i and in G̃ is cl conv(X i). For
any PNE σ̃ of G̃, there exists an MNE σ̂ of G such that each player i gets the same payoff in
G and G̃. Further, if G̃ has no PNE, then G has no MNE.

In the proof (which is in appendix A.1), we exploit the linearity of each player’s objective
(given its opponents’ choices) to compute the players’ expectation of payoffs. Thus, assuming
the game is an RBG is crucial for the result to hold. As of Theorem 4, any i-th player’s
problem in a polyhedrally-representable RBG translates to an equivalent convex game where
the feasible set is cl conv(X i) instead of X i. In such a game, one can directly optimize over
the mixed strategies, and each player i solves a linear program, where xi are its variables
and x−i are parameters. By pairing all the players’ complementarity conditions – namely
the primal-dual slackness of each i-th linear program – we obtain an LCP where any feasible
solution is a PNE for the convex game [46]. However, one may not necessarily have access to
cl conv(X i) (e.g., an integer programming perfect formulation). In this sense, reformulating
the game on the cl conv(X i)-sets may be practically unviable.

5.2.2 Integer Programming Games

IPGs extend the realm of integer programming to a multi-agent setting. Each player i solves
the integer program

min
xi

Πi(xi, x−i) (5.3a)

s.t. Aixi ≤ bi, xi ≥ 0, xi
j ∈ N∀j ∈ I i. (5.3b)

The matrix Ai and the vector bi have rational entries, and we require some variables – whose
indexes are in I i – to be integer. To follow the standard notation from Köppe et al. [95], Πi

is a continuous payoff function. Whenever Πi takes the form of the objective in Definition 8,
the IPG is also an RBG. This latter family of IPGs is of particular interest from the MIP
community since it naturally extends a broad range of tasks from the Operations Research
community to a multi-agent setting. For the scope of this work, we focus on IPGs that are
also RBGs. Hence, for any i, the set X i is the set of feasible points for (5.3). The perfect
formulation of the feasible region in (5.3) for any player i is cl conv(X i). This formulation is
notoriously difficult to obtain in practice, and often contains a number of linear inequalities
that is exponential in the size of the data needed to describe the problem [41]. Finally, one
can visualize the interaction among i and its opponents as the change in the direction of the
i-th objective function due to the opponent’s parameters x−i.
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5.2.3 NASPs

We recall the definition of NASPs problems from [31]. In this game, each player i ∈ {1, . . . , n}
solves the optimization problem P i(xi, x−i) in xi (for brevity, P i) in the form of (5.4), where
ci is a real-valued vector of dimension ni, and Qi

o is a no×ni real-valued matrix encapsulating
the interactions between any two distinct players i and o. Any leader i has mi followers,
each of which solves a convex continuous optimization problem as in (5.4c). For a given
leader i, and its respective follower j ∈ {1, . . . , mi}, f i,j, ei,j and Di,j,Ei,j,F i,j,Gi,j,H i,j are
respectively vectors and matrices of conformable dimensions. Each feasible set X i is given
by the constraints in (5.4), namely a set of linear constraints (5.4b) and bilevel ones (5.4c).
Furthermore, the variables xi are partitioned into the leader’s variables wi, and the followers’
ones yi = (yi,1, . . . , yi,mi) as of (5.4d). Thus, the mathematical program reads as

min
xi

(ci)⊤xi +
n∑

o=1,o ̸=i

(xo)⊤Qi
ox

i (5.4a)

s.t. Aixi = bi (5.4b)

yi,j ∈ arg min
yi,j
{(1

2(yi,j)⊤Di,jyi,j + (f i,j +
mi∑

k=1,k ̸=j

(yi,k)⊤Ei,j)yi,j+

(Fwi)⊤yi,j : Gi,jwi + H i,jyi,j ≤ ei,j, yi,j ≥ 0}

∀j ∈ {1, . . . , mi} (5.4c)

xi ≥ 0, xi = (wi, yi). (5.4d)

Any single problem P i is a linear Stackelberg Game [139] parametrized in x−i, while a NASP
P = (P 1, . . . , P n) is a tuple of n Stackelberg Games. Leaders interact through their objectives,
while followers can interact only with their respective leader and followers. Thus, leaders are
simultaneously deciding their strategies while ensuring optimality conditions for their followers.
For any given leader i, its feasible region X i (5.4b)-(5.4d) is a finite union of polyhedra [31],
and hence NASPs are polyhedrally-representable RBGs. One can rewrite X i as

X i =


xi :

Aixi ≤ bi

zi = M ixi + qi

0 ≤ xi
j ⊥ zi

j ≥ 0 ∀ j ∈ Ci

xi ≥ 0


(5.5)

where Ci is a set of indexes for the complementarity equations. With such notation, we rewrite
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the followers’ convex quadratic linear problems into identical complementarity conditions
derived from the KKT conditions. We point the reader to Colson et al. [40] for a tutorial in
the context of bilevel problems, and to Carvalho et al. [31] for a tutorial on NASPs. We can
further rewrite (5.5) as

X i =


Aixi ≤ bi

zi = M ixi + qi

xi ≥ 0, zi ≥ 0

︸ ︷︷ ︸
Oi

0

⋂
j∈Ci

({zi
j = 0} ∪ {xi

j = 0}). (5.6)

In this last reformulation, we explicitly express X i as a finite union of polyhedra. For any
leader i, we refer to the first polyhedron in (5.6) as the polyhedral relaxation Oi

0. In other
words, this is the polyhedron containing the leader constraints, the definitions for zi, and
the non-negativity constraints. For Theorem 4, given a leader i, if σi ∈ X i then σi is a
pure-strategy for i, otherwise, i.e., if σi ∈ cl conv(X i)\X i, σi is a mixed-strategy. Hence, we
optimize the leaders’ objective functions over cl conv(X i) rather than X i (for any i). We can
then consider cl conv(X i) by exploiting the well-known extended formulation of the union of
polyhedra from Balas’ theorem [8, 9].

5.3 Algorithmic Scheme

First, we briefly sketch the ideas behind our algorithm. In a nutshell, the CnP computes an
MNE for an RBG instance by computing the MNE of a sequence of “easier” convex games,
namely what we define as approximate games.

Definition 10 (Approximate Game). Given an RBG instance G, G̃ is an approximate game
for G if and only if: (i.) G and G̃ have the same number of players, and their payoff functions
are equal (ii.) for each i = 1, . . . , n, let X i and X̃ i be the feasible region of player i in G

and G̃, respectively: then, X̃ i ⊇ X i (X̃ i is an outer approximation of X i). Further, G̃ is a
Polyhedral Approximate Game (PAG) of G if X̃ i is a polyhedron for each i = 1, . . . , n in G̃.

In Definition 10 we let X̃ i be an outer approximation – possibly polyhedral in PAGs– of
cl conv(X i), namely the mixed-strategy space for player i. The CnP will compute MNEs for
a sequence of PAGs, eventually refining one or more of the X̃ i by either adding cutting planes
or branching on general disjunctions. This process evokes the same scheme one would use to
solve a MIP via Branch and Cut [120], where – instead of a game and an approximate game
– one deals with a MIP and its (linear) relaxation. As the X̃ i-sets are polyhedral, one can
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formulate an LCP to determine a PNE in the PAG. Since LCPs are NP-hard problems, at
each iteration of the CnP , we will solve a difficult problem. This is not surprising, given that
both deciding on the existence of an MNE for IPGs and NASPs are Σp

2-hard problems, for
instance. In MIP, a feasible solution to the original problem is always feasible for its linear
relaxation, and there is a relationship between the bounds of the two. However, this may not
be the case in games.

Optimization, Relaxations and Games. One refines the player’s feasible regions as one
would refine a series of increasingly accurate relaxations of an integer program. A feasible
solution to the original problem is always feasible for its relaxation, and often there is a
relationship between the bounds of the two. However, when dealing with games and Nash
equilibria, such a strong relationship does not necessarily hold, as we illustrate in Example 4.
Carvalho et al. [32] provides a similar example in the context of IPGs. A feasible MNE for the
original problem may not be an MNE for the PAG, since the latter may introduce (infeasible)
profitable deviations for some players, i.e., strategies that are not feasible but prevents the
existence of an equilibrium. As a consequence, there is no concept of bound on the players’
objective functions. When players have possibly unbounded feasible regions, a PAG may not
even have an equilibrium, whereas the original game has one (Example 4). In this sense, one
loses information by outer approximating one or more of the players’ X̃ i sets.

Example 4. Consider an RBG with n = 2: Player 1 solves minx{ξx : x ∈ R, x ≥ 1} while
Player 2 solves minξ{xξ : ξ ∈ R, ξ ∈ [1, 2]}. This game has an MNE: (x, ξ) = (1, 1). Consider
now the PAG where Player 2’s feasible region is {ξ ∈ R : ξ ∈ [−1, 2]}. Then, this PAG has
no MNE despite the original game has one. Second, if Player 2 objective becomes −xξ, then
the original problem does not have an MNE, while the PAG has the MNE (x, ξ) = (1, 2).

Algorithmic outline. Through this section, we provide an abstract rationale for the
CnP algorithm. While the scheme works on any RBG and it is general in this sense, we will
later contextualize it for IPGs and NASPs in Section 5.5. We start from a game in the form
of (5.1), assuming to have access to an initial PAG. With NASPs, a natural choice is the
polyhedral relaxation Oi

0 for any i, while for IPGs is the linear relaxation of each player’s
integer program. For any given player i, let X̃ i

t = {Ãi
tx

i ≤ b̃i
t, xi ≥ 0} be the increasingly

accurate outer approximation of its feasible region X i at step t of the cutting plane algorithm.
We compute an equilibrium for the PAG by building an LCP where each player i solves an
optimization problem over X̃ i

t (and the original objective function for the input RBG). Let
Mt, and qt be a vector and a matrix defined as in
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qt =



c1

b̃1
t
...

cn

b̃n
t


, Mt =



C1x−1 Ã1⊤
t

−Ã1
t 0

...
Cnx−n Ãn⊤

t

−Ãn
t 0


. (5.7)

The objects in (5.7) model the KKT conditions for each player’s convex program associated
with the outer approximation of its optimization problems. In other words, they are the
optimality conditions associated with the objective function of the original game and the outer
approximated feasible regions. The solutions to the LCP defined as 0 ≤ σ ⊥ z = (Mtσ+qt) ≥ 0
provide all the PNEs σ = (σ1, . . . , σn) for the PAG at step t. Similarly to MIP ’s relaxations,
we refine X̃ i

t to X̃ i
t+1 in two ways: by cutting or by a branching decision. For cutting, we

point to the addition of cutting planes that are valid for cl conv(X i). As for branching, we
borrow the term from MIP to refer to the inclusion of a general disjunction over one or more
variables.

5.3.1 The Cut-and-Play Algorithm

We present the CnP algorithm in Algorithm 3. The input is a polyhedrally-representable RBG
instance G (a numerical tolerance ϵ), while the output is either an MNE σ̂ or a certificate of
non-existence. We assume to have access to an initial PAG G̃. For IPGs, the most natural
choice is the linear relaxation of each player’s integer program. For any given player i, let
X̃ i

0 be the starting outer approximation for the i-th feasible region at the starting iteration
t = 0. In G̃, the feasible sets are polyhedra, and hence the MNE of G̃ are all PNEs (if any).
We determine if G̃ has PNEs by solving the LCP defined as 0 ≤ σ ⊥ z = (Mtσ + qt) ≥ 0
with Mt and qt defined as in (5.7). If G̃ has no PNE , we cannot infer that G has no MNE
(Example 4). This non-existence condition triggers when there is at least one i with an
unbounded X̃ i

t . The only viable option is to further improve G̃ by refining at least one X̃ i
t

(for some i) with the Branch-and-Cut subroutine, where the algorithm branches and may add
a valid inequality for cl conv(X i) (Step 15). The inequality here is a discretionary operation,
and does not affect finite termination (yet, it may affect performance). In specific, since this
step only occurs when there is no PNE for G̃, there is not even a point to cut off. The only
viable option is, in fact, to refine the approximation. Assume X i = Y i ∪ Zi where Y i, Zi

are two arbitrary sets so that cl conv(X i) = cl conv(Y i ∪ Zi). If at a step t, there exists a
σ̃i ∈ X̃ i

t \ cl conv(X i), then the branching operation accounts to finding a Y i
t+1 and Zi

t+1 so that
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Algorithm 3: Cut-and-Play for RBGs
Data: An instance G of an RBG, a numerical tolerance ϵ
Result: σ̂ = (σ̂1, . . . , σ̂n) or ∅ (no MNE exists).

1 Let X̃ i
0 = {Ãixi ≤ b̃i, xi ≥ 0} for i = 1, . . . , n, and let t← 0 ;

2 while true do
3 G̃← (P̃ 1, . . . , P̃ n), where P̃ i = minxi{f i(xi, x−i) : xi ∈ X̃ i

t } ;
4 σ̃ ← EquilibriumLCP (G̃) /* Reformulate as an LCP */
5 if there exists a PNE σ̃ for G̃ then
6 for each player i = 1, 2, . . . , n do
7 A←ESO(σ̃i,X i, ϵ, ci + (Ci)⊤σ̃−i) /* Call the ESO */
8 if A is no then
9 X̃ i

t+1 ← X̃ i
t ∩ {π̄⊤xi ≤ π̄0} /* π, π0 from ESO ’s no */

10 Branch: Find a disjunction in terms of Y i
t+1, Zi

t+1 for X i in G, and let
X̃ i

t+1 ← cl conv(Y i
t+1 ∪ Zi

t+1)

11 if ESO returned n yes then solved=true, return σ̃ ;
12 else if no PNE then
13 if no Branch-or-Cut candidates for any i then return ∅ ;
14 else
15 Branch-and-Cut: (i.) find a disjunction in terms of Y i

t+1, Zi
t+1 for X i in G,

and let X̃ i
t+1 ← cl conv(Y i

t+1 ∪ Zi
t+1), and (ii.) add a valid inequality for

cl conv(X i)

16 t← t + 1

σ̃i /∈ X̃ i
t+1 := cl conv(Y i

t+1∪Zi
t+1), with X̃ i

t+1 ⊆ X̃ i
t . From a different perspective, this operation

accounts for finding (one or more) general disjunctions for X i. This procedure boils down to
the computation of X̃ i

t+1 through Balas’ theorem [8, 9] as the union of a two-sided disjunction.
For instance, in a NASP, the branching step may find a complementarity j ∈ Ci for player
i at step t, so that X̃ i

t+1 = cl conv((X̃ i ∩ xi
j = 0) ∪ (X̃ i ∩ zi

j = 0)). However, it may happen
that no more branch-or-cut candidates are available (Step 13), namely when X̃ i

t = cl conv(X i)
for any i. In this case, if the algorithm found no PNE at step t, we can conclude no MNE
for G exists (as of Theorem 4). Conversely, if G̃ has a PNE σ̃ = (σ̃1, . . . , σ̃n), the question is
whether σ̃ is an MNE for G or not. That is, for every player i, is σ̃i a feasible mixed-strategy,
e.g, σ̃i ∈ cl conv(X i)? Such a question is the ESO’s task, which – for any i (and a tolerance
ϵ) – either returns (i.) a no as the answer and a separating hyperplane π̄⊤xi ≤ π̄0 for σ̃i and
X̃ i

t , or (ii.) a yes with a constructive proof of inclusion with respect to cl conv(X i). If the
ESO answered with at least one no for a given player i, then there exists a cut π̄⊤xi ≤ π̄0

that becomes part of X̃ i
t+i. If there are n yes answers, then σ̃ is an MNE for G. Figure 5.1

gives a flow-chart of the whole process.
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An RBG instance G and ϵ

Outer approximations X̃ i
0

for all players i

EquilibriumLCP(G̃)

The PAG G̃ has an PNE

Is there a branching
or cut candidate for i?

Refine (multiple) X̃ i
t+1;

ESO(σ̃i,X i, ϵ, ci + (Ci)⊤σ̃−i)
for any i

return MNE σ̃

Add π̄xi ≤ π̄o

for any i : σ̃i infeasible,
and branch

return No MNE

yes
σ̃

yes

no

no

yes

no

Figure 5.1 A graphical representation of the CnP algorithm.

MIP and Equilibria Selection. In order to determine if a given PAG G̃ has an MNE , we
reformulate the game as an LCP as of Step 4. One can either solve directly the LCP via a
specialized solver (i.e., PATH by [56, 70]), or via a MIP reformulation. In the latter case,
one can get a MIP program from Step 4 by reformulating the complementarity conditions
(i.e., with SOS1, bgM , or indicator constraints [93]). Although a MIP reformulation hides
the underlying complementarity structure that a solver such as PATH may exploit, it has
two main benefits for our algorithmic machine. The MIP solver can optimize an arbitrary
objective function w : ∏n

i=1 xi → R (up to the given solver’s capability) to select an MNE in
the PAG G̃ accordingly. While the resulting MNE may not minimize w among all the MNEs
of G, it necessarily minimizes w among the MNEs of G̃ for w. In this regard, the algorithmic
scheme may incorporate some equilibria selection through MIP, and integrate with existing
methodological advancements in the context of MIP and complementarity constraints [147].

Theorem 5. Given a polyhedrally-representable RBG instance G, Algorithm 3 terminates
finitely and (i.) if it returns σ̂ = (σ̂1, . . . , σ̂n) then σ̂ is an MNE for G, and (ii.) if it returns
failure, then G has no MNE.

Proof. First, we prove the algorithm terminates finitely.
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Termination. The calls to solve the LCP in Step 4, and to the ESO in Step 7 finitely terminate
(see Proposition 4). The only loop that could potentially not terminate is the one starting in
Step 2. We restrict to the case where the set X i is bounded for any player i. Then, any PAG
G̃ will necessarily have finitely many PNEs with finite support in Step 4. Furthermore, since
there always exists a PNE for G̃, the algorithm will never enter in Step 12. Thus, Step 9 and
Step 10 are the only two steps refining the sets X̃ i

t for some i. Then: (i.) the ESO terminates
finitely (we defer the appropriate proof to the next section), and (ii.) there are finitely many
PNEs in G̃, and (iii.) the branching step along with the ESO will necessarily find cl conv(X i)
for any i at some point. Thus, the algorithm will terminate finitely whenever X i is bounded
for any i. Whenever at least one set X i is unbounded, then a PNE for a given PAG G̃ may not
exist. Thus, the algorithm may enter Step 12. Then, Step 15 will necessarily find cl conv(X i)
at some step. Then either (i.) there exists a PNE in G̃ that is also an MNE for G, and the
algorithm returns it, or (ii.) there exists no PNE in G̃, and the algorithm returns ∅. Thus,
the algorithm terminates finitely.

Proof of statements (i) and (ii). We show that σ̂ is an MNE for G. If the algorithm returns
σ̂, then there exists an approximate game G̃ in Step 3 that outputed a PNE σ̃ = σ̂. Let this
last iteration be denoted with t = θ. For each player i, its feasible region in the approximate
game is X̃ i

θ , and the following equilibrium inequalities hold

f i(σ̂i, σ̂−i) ≤ f i(σ̄i, σ̂−i) ∀ σ̄i ∈ X̃ i
θ . (5.8)

Namely, no player i has an incentive to deviate from σ̂i to any other strategy bar σi ∈ X̃ i
θ in

the approximate game. Since cl conv(X i) ⊆ X̃ i
θ for any i, the following holds

f i(σ̂i, σ̂−i) ≤ f i(σ̄i, σ̂−i) ∀ σ̄i ∈ cl conv(X i). (5.9)

Since there cannot exist a strategy σ̆i ∈ X̃ i
θ\ cl conv(X i) by construction, σ̂ is also an MNE

for G.

Remark 2. Algorithm 3 extends to RBGs that are not necessarily polyhedrally-representable,
as long as one can optimize a linear function over each player’s feasible set, after intersecting
them with some polyhedra. Up to modifications in the choices of the convex hull of the players’
feasible set, and of the branching and cutting steps (e.g., disjunction on integer variables
or bilevel sets), the algorithm generalizes to any RBGs up to an ϵ numerical precision if
the associated ESO terminates finitely for every cl conv(X i). Further, one can heuristically
(i.) avoid branching in Step 10 and only add a valid cut in the previous step (ii.) skip the
cutting in Step 15. Further, a MIP solver can handle the LCPs of Step 4 with a non-void
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objective function w : ∏n
i=1X i → R in the players variables, and select the PNE of G̃ that

minimizes w. Finally, one may add other types of valid inequalities for any cl conv(X i) after
Step 10, e.g., families of MIP inequalities in an IPG.

5.4 Implementing the ESO

Given a set X ∈ Rd and a point x̄ ∈ Rd as inputs – and assuming to have access to a blackbox
to optimize a linear function over X – the ESO will either:

(i.) outputs yes and (V, α) if x̄ ∈ cl conv(X ), with V ⊆ X , and α ∈ R|V | being the
coefficients of the convex combination of elements in V (i.e., x̄ ∈ conv(V ) ⊆ cl conv(X )),
or

(ii.) outputs no and a tuple (π̄, π̄0) so that π̄⊤x ≤ π̄0 with x ∈ X is a separating hyperplane
for x̄ and cl conv(X ).

Compared to a standard separation oracle [81, 91], here X is not convex, and we separate
from cl conv(X ). The separation from cl conv(X ) is crucial for its applicability to RBGs, as
of Theorem 4. Since any RBG has an equivalent convex representation (i.e., where each
player plays on cl conv(X i)), one would expect, given a feasible input set X i and a point
σ̃i, to determine that either: (i.) σ̃i is a mixed-strategy and supp(σ̃i) = V with α being the
probabilities of each strategy in V , or (ii.) σ̃i /∈ cl conv(X i), and π̄⊤xi ≤ π̄0 is a separating
hyperplane for the set of mixed strategies cl conv(X i).

Practical and game-theoretical considerations. A theoretical version of this ESO
would include polynomially-many runs of the ellipsoid algorithm, which would make it
rather intractable in practice. We provide a V-polyhedral implementation of it, where we
explicitly require cl conv(X ) to be a polyhedron. This allows us to decompose cl conv(X )
as conic combination of its rays rec(cl conv(X )) and convex combination of its extreme
points ext(cl conv(X )) (the V-polyhedral representation). The ESO will iteratively build
an inner approximation of cl conv(X ) by identifying (and storing) its rays and vertices. If
the input point x̄ cannot be expressed by the incumbent inner approximation of cl conv(X ),
the oracle either tries to recover new vertices and rays or outputs a separating hyperplane.
More importantly, this implementation further exploits two fundamental game-theoretical
interpretations of the underlying optimization problems that players solve. First, any strategy
supporting an MNE must be a pure best-response, thus any vertex should be a pure-strategy
best-response. One can visualize this by taking a player i and its opponents’ strategies
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σ−i, and noticing that the best-response σi is then the solution of a parametrized – in σ−i

– mathematical program. This implies the actual set of extreme points needed to describe
the subset of cl conv(X i) needed for an MNE may be smaller – in practice – than cl conv(X i)
itself. Second, Theorem 3 provides that the utilities of any of the pure strategies in the
support of the MNE must be equal to the one of the MNE itself.

The Value Cuts. Starting from these two observations, we develop an optimization-based
test to possibly diagnose the infeasibility of a given strategy profile for an approximated game G̃

with respect to the original RBG G. We directly exploit Theorem 3, which provides a necessary
condition on the players’ payoffs in an MNE . Given a set of strategies σ̃ = (σ̃1, . . . , σ̃n) for
G̃, we can check if any of the σ̃i have a payoff that improves (e.g., is less than) the one of
a pure best-response to σ̃−i in G. For the i-th player, consider the mathematical program
z̄i = minxi{f i(xi, σ̃−i) : xi ∈ X i}, which can be optimized by assumption. If z̄i > f i(σ̃i, σ̃−i),
then a valid separating hyperplane for cl conv(X i) is f i(xi, σ̃−i) ≥ z̄i. We call these simple
linear inequalities as value cuts, and formalize them in Proposition 3. Clearly, such inequalities
are valid for the cl conv(X i)-sets of each player.

Proposition 3. Consider an RBG G, and an arbitrary game approximation G̃ of G. Then,
given a strategy profile σ̃ = (σ̃1, . . . , σ̃n) for G̃, for any i,

f i(xi, σ̃−i) ≥ inf
xi
{f i(xi, σ̃−i) : xi ∈ X i}

is a (supporting) valid inequality for cl conv(X i) if infxi{f i(xi, σ̃−i) : xi ∈ X i} = zi <∞. If
zi > f i(σ̃i, σ̃−i), then we call the inequality a value cut for cl conv(X i) and σ̃i.

The proof, which follows from the definition of infimum, is in (appendix A.2).

5.4.1 The V-Polyhedral ESO

In this section, we discuss the V-polyhedral implementation of the ESO, including matters
concerning cutting planes generation and numerical stability. Algorithm 4 sketches the
implementation we will refer through this section. We have two additional inputs: (i.) a
numerical tolerance ϵ, and (ii.) an (optional) real-valued vector c having the same length of the
input point x̄ (to perform the test of Proposition 3). For instance, in Step 7 of Algorithm 3,
we call the ESO with c = ci + (Ci)⊤σ̃−i, the set X i of i, x̄ = σ̃i, and ϵ. We also expect one to
store and access the elements of V, R across different ESO’s calls, and we (initially) assume
V = R = ∅.
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Algorithm 4: Enhanced Separation Oracle
Data: A point x̄, a set X , a tolerance ϵ, astorage of V, R, (a vector c).
Result: Either: (i.) yes and (V, R, α, β) if x̄ ∈ cl conv(X ), or (ii.) no and a

separating hyperplane π̄⊤x ≤ π̄0 for cl conv(X ) and x̄.
1 x̃← arg minx{c⊤x : x ∈ X}, with z̄ = c⊤x̃. ;
2 if c⊤x̄ < z̄ then return no and (−c,−z̄) ;
3 if x̄ = x̃ up to ϵ then return yes and ({x̄}, ∅, (1), ()) ;
4 while true do
5 W ← conv(V ) + cone(R). PRLP: x̄ ∈ W? (up to ϵ)
6 if x̄ ∈ W then return yes and (V, R, α, β) ;
7 else
8 Separating hyperplane π̄⊤x ≤ π̄0 for x̄ and W ;
9 G ← maxx{π̄⊤x : x ∈ X} /* Blackbox */

10 if G is unbounded then
11 R← R ∪ {r}, where r is an extreme ray of G ;
12 else
13 if π̄⊤ν < π̄⊤x̄ then return no and (π̄, π̄⊤ν) ;
14 else ν ← arg maxx{π̄⊤x : x ∈ X}, and V ← V ∪ {ν} ;

As a first (and optional) step, we check if there is any violated value cut by solving the
optimization problem z̄ = minx{c⊤x : x ∈ X} of Step 1. Specifically, we compare the value
of c⊤x̄ to the one of z̄ in Step 1. Let x̃ be the minimizer yielding z̄. If (i.) c⊤x̄ < z̄ (up to
ϵ), then the ESO returns a (value) cut (Step 2), or (ii.) x̄ = x̃, then the ESO returns yes
(Step 3). Otherwise, let W of Step 5 be so that W = conv(V ) + cone(R). The task is now to
determine if x̄ ∈ W . The task is then to determine if x̄ ∈ W .

The Point-Ray Separator. In order to decide if x̄ ∈ W, we formulate the separation
problem through a linear program. The task is to express x̄ as the sum of a convex combination
of elements in V and a conic combination of elements in R. Let α (β) be the convex (conic)
coefficients for any element in V (R). Then, x̄ ∈ W if and only if there exists a solution (α, β)
to

|V |∑
k=1

v⊤
k αk +

|R|∑
j=1

r⊤
j βj = x̄,

|V |∑
k=1

αk = 1, α ≥ 0, β ≥ 0. (5.10)

By linear programming duality, (5.10) has no solution if there exists a solution (π̄, π̄0) to(5.11)
so that π̄⊤x̄− π̄0 > 0.
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πv⊤
k − π0 ≤ 0 ∀vk ∈ V (5.11)

πr⊤
j ≤ 0 ∀rj ∈ R

Starting from(5.11), we require our separator to have two additional features: (i.) to maximize
the violation x̄⊤π − π0, and (ii.) to normalize the coefficients π so that ||π||1 = 1. We write
the final program as in (5.12) and define it as the Point Ray Linear Program (PRLP).

max
π, π0

x̄⊤π − π0 (5.12a)

s.t. πv⊤
k − π0 ≤ 0, ∀vk ∈ V (α) (5.12b)

πr⊤
j ≤ 0, ∀rj ∈ R (β) (5.12c)

π + u− v = 0 (γ) (5.12d)

e⊤(u + v) = 1 (δ) (5.12e)

u, v ≥ 0 (5.12f)

This PRLP has a similar formulation to the ones of [38, 122]. Each vertex vk ∈ V (resp., ray
rj ∈ R) requires constraints such as (5.12b) (resp., (5.12c)), while the non-negative variables
u,v represent the L1-norm of π. The normalization constraints (5.12d) and (5.12e) truncate
the cone of the PRLP by setting such L1-norm to 1. Let π̄, π̄0 be the optimal values of π, π0

in the PRLP . On the one hand, if the PRLP admits an optimal solution with objective of 0,
the oracle returns yes (Step 6) since x̄ ∈ W ⊆ cl conv(X ). The convex multipliers α (resp.,
conic multipliers β) are the dual values of (5.12b) (resp., (5.12c)). On the other hand, if
x̄⊤π̄ − π̄0 > 0, then π̄⊤x ≤ π̄0 is a separating hyperplane for x̄ and W . In order to determine
if π̄⊤x ≤ π̄0 is also a separating hyperplane for x̄ and cl conv(X ), in Step 9 we optimize the
inequality over X . If G = maxx{π̄⊤x : x ∈ X} is unbounded, then its extreme ray r is a new
ray for the set R. Conversely, if G admits an optimal solution ν, the latter is necessarily a new
vertex for the set V (Step 14). Furthermore, if π̄⊤ν < π̄⊤x̄, then x̄ is necessarily infeasible.
De facto, this means x̄ is separated from cl conv(X ) by π̄⊤x ≤ π̄⊤ν, and the ESO returns no.
If this is not the case, the ESO necessarily identified a new vertex (or ray), and the process
restarts from Step 5.

Similarly to Perregaard and Balas [122], one can modify Step 9 of Algorithm 4 to retrieve
multiple vertices and rays violating π̄⊤x ≤ π̄0, and subsequently add them in Step 14 and
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Step 11. In this way, the W inner approximation tends to build faster without significantly
impacting the computational overhead.

cl conv (X )

ν

max(π̄�x)

v1

v2

v3

(a) ν /∈ W. Optimizing π̄⊤x over X
yields ν. The oracle will return yes,
since π̄⊤ν > π̄⊤x̄ holds.

x̄

cl conv (X )

ν

max(π̄�x)

v1

v2

v3

(b) ν /∈ W. Optimizing π̄⊤x over X
yields ν. The oracle will return no and
π̄⊤ν < π̄⊤x̄.

Figure 5.2 A 2-dimensional example of Algorithm 4 trying to separate x̄ from cl conv(X ).
Here, X = {conv(v2, ν)}⋃{conv(v1, v3) + cone(r1)}. In light blue, cl conv(X ), while in dark
blue its inner approximation W = conv(v1, v2, v3) at a given iteration of the ESO.

Normalizations and termination. The normalizations of the PRLP in (5.12) are
decisive in practice, since they affect the algorithm’s overall stability (and convergence)
through the generated cutting planes. Often, normalizations dramatically affect the generators’
performance [16, 55, 71, 122]. Hence, normalize (5.12) with (5.12d). Also, for any new ray
r added in Step 11, we require ||r||2 = 1. In practice, we observed that such precautions
often produce reasonably sparse and numerically stable cuts. Finally, we show this ESO
implementation terminates in a finite number of steps with Proposition 4.

Proposition 4. The ESO terminates in a finite number of steps whenever cl conv(X ) is a
polyhedron.

Proof. The ESO inner approximate cl conv(X ) with its V-representation, which is made
finitely many rays and vertices for any given polyhedron. Hence, we have to prove that the
ESO will never find a vertex vk (ray rj) in Step 14 (Step 11) so that vk was already in V (rj

was already in R) in the previous Step 5. This will necessarily imply that the loop in Step 4
terminates. The inequality in Step 8 is valid for W if and only if π̄⊤vk ≤ π̄0 for any vk ∈ V ,
and π̄⊤rj ≤ 0 for any rj ∈ R as of (5.12b) and (5.12c). Also, it is a separating hyperplane
between W and x̄, thus π̄⊤x̄ > π̄0. Yet, it may not necessarily be a valid inequality for any
element in ext(cl conv(X )) and rec(cl conv(X )). Consider now G in Step 9. On the one hand,
if G is bounded, let ν be its optimal solution. Then, either (i.) π̄⊤ν < π̄⊤x̄ with π̄⊤x ≤ π̄⊤ν
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being a separating hyperplane between cl conv(X ) and x̄. Thus the algorithm terminates and
returns no, or (ii.) π̄⊤ν ≥ π̄⊤x̄, and ν is necessarily a vertex of ext(cl conv(X ))\V violating
π̄⊤x ≤ π̄0. Then, the algorithm updates V ← V ∪{ν}. On the other hand, if G is unbounded,
then there exists a extreme ray r so that π̄⊤r > 0. Then, ν is necessarily in rec(cl conv(X ))\R,
and π̄⊤ν > π̄0. The algorithm updates R← R ∪ {r} and go back to Step 5. Since there are
finitely many rays and vertices, the algorithm will then terminate.

Eliminating the conic coefficients. Given a yes and (V, R, α, β) from Algorithm 4, one
may need to determine an equivalent proof of inclusion where the set R is void. When using
the CnP, this is equivalent to finding an explicit description of a mixed-strategy σ̃i as a
convex combination of pure strategies in X i, thus determining supp(σ̃i). Proposition 5 proves
we can always convert a proof (V, R, α, β) to a proof (Ṽ , α̃).

Proposition 5. Let x̄ and X be the inputs of Algorithm 4, and cl conv(X ) be a polyhedron.
Assuming the algorithm returns yes and (V, R, α, β), one can always convert the proof of
inclusion (V, R, α, β) to an equivalent one (Ṽ , α̃), where – for any element v ∈ Ṽ – v ∈ X .

Proof. Let Sv = ext(cl conv(X )) and Sr = rec(cl conv(X )) be the set of extreme points and
extreme rays for cl conv(X ), respectively. Without loss of generality, we restrict to the case
where x̄ = v∗ + λ∗r∗ and r∗ ∈ V and r∗ ∈ R, namely when |V | = |R| = 1. The proof naturally
generalizes when |V | > 1 or |R| > 1. We will write x̄ as the limit of a set of points resulting
from convex combinations of points in X . Since r∗ ∈ Sr, it is also an extreme direction of
a given cone of C so that there exists a set B ⊆ X and conv(B) = C. Let v̄ ∈ C be an
arbitrary point in C. We define the new point x̄ϵ = x̄− (v∗− v̄)ϵ. By definition, we have that
limϵ→0 x̄ϵ = x̄. We can now rewrite x̄ϵ as a convex combination of v∗ and a point v̄ + λϵr

∗,
where the latter belongs to the cone C for any λϵ ≥ 0.

x̄ϵ = ηv∗ + (1− η)(v̄ + λϵr
∗) η ∈ [0, 1] (5.13)

By substituting the definition of x̄ϵ in (5.13) we have that

x̄− ϵv∗ + ϵv̄ = ηv∗ + (1− η)(v̄ + λϵr
∗), (5.14)

and by plugging the definition of x̄ in (5.14) we have that

v∗ + λ∗r∗ − ϵv∗ + ϵv̄ = ηv∗ + (1− η)(v̄ + λϵr
∗)⇒ (5.15)

v∗(1− ϵ) + ϵ(v̄ + λ∗

ϵ
r∗) = ηv∗ + (1− η)(v̄ + λϵr

∗). (5.16)
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The latter equality holds when η = 1− ϵ and λϵ = λ∗

ϵ
.

5.5 Tailoring the CnP

Although both Algorithm 3 and Algorithm 4 are correct and generalize for any polyhedrally-
representable RBG, one may exploit the special structure of the players’ feasible sets to
improve the algorithms. We present two applications to NASPs and IPGs.

5.5.1 CnP for NASPs

In NASPs, we reformulate each bilevel program by incorporating the lower-level follower
problems as complementarity constraints. Since the followers’ problems are convex-quadratic,
this step translates in writing the KKT conditions associated with each followers’ convex
quadratic program. Such constraints are non-linear and are in the form of complementarity
equations. Thus, each of the reformulated problems is a set of the linear leader constraints and
the followers’ complementarity conditions as in(5.5). Since the reformulated leaders’ problems
include the followers’ ones, we refer to these reformulated bilevel programs as the players of
this game. In Algorithm 3, we start by omitting all the complementarity constraints in the
initial relaxation, vastly enlarging the action space for every player. Thus, the relaxation in
Step 1 is the polyhedral relaxation X̃ i

0 = Oi
0, for each player i. Since the description of (5.5)

only needs a finite number of complementarity conditions in Ci, the algorithm should track
the number of included complementarities at any iteration t via a set J i

t . Then, Step 15 will
include in the next X̃ i

t+1 set one (or more) complementarity j for some player i so that j /∈ J i
t

and j ∈ Ci. Thus, the branching step in Step 15 accounts to finding (one or more) leader i

for which J i
t ≠ ∅, and include a complementarity j ∈ J i

t in its refined X̃ i
t+1 set. This boils

down to the computation of X̃ i
t+1 as the union of a two-sided disjunction {X̃ i

t ∩ xi
ji ≤ 0} and

{X̃ i
t ∩ zi

ji ≤ 0}, where xi
ji ,zi

ji are the terms involved in the j-th complementarity of i. If the
algorithm ends at step t with J i

t = Ci for any i, then we implicitly solved the game via its
exact formulation (i.e., we obtained cl conv(X i) for any i). In practice, one runs Algorithm 3
with a finite time limit and expects the algorithm to exhibit a reliable converging behavior
towards a solution. Two decisive steps of Algorithm 3 are the branching in Step 15, and the
procedure EquilibriumLCP in Step 4. Within MIP , the “dark side” heuristic nature of some
decisions plays a pivotal role in solvers [107]. With the same spirit, we elaborate an additional
ingredient to the algorithm.

Branching step. We focus on the branching task in Step 15. We devised two simple
branching rules working whenever there exists an MNE σ̃ in Step 4 at iteration t. Given
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a generic player i, its branching candidates at t are in the set Ci\J i
t , which we assume to

contain strictly more than one element.

(i.) Hybrid branching: for any candidate j in this set, we optimize minλi{(λi)2 : σ̃i ∈
cl conv({X̃ i

t ∩ xi
ji ≤ 0} ∪ {X̃ i

t ∩ zi
ji ≤ 0})}, where λ are the constraint violations, whose

sum of squares we minimize. We select the complementarity with the largest constraint
violation among the candidates.

(ii.) Deviation branching: we compute the best-response for i to σ̃−i by solving the bilevel
problem of i. We then select the first (given an arbitrary order) complementarity j

necessary to encode part of the polyhedron containing such best-response.

5.5.2 CnP for IPGs

We tailor Algorithm 3 by exploiting some standard techniques of MIP . We present four ideas
regarding tailoring.

(i.) Since each player’s objective direction changes according to the other players’ decisions,
we speculate the number of cuts the CnP uses may grow faster than it would in a single
MIP . Since cl conv(X i) is the perfect formulation, any family of valid inequalities for an
integer program is also valid for the each player’s (parametrized) integer program. For
instance, in our tests, we use Gomory Mixed-Integer (GMIs), Mixed-Integer Rounding
(MIRs), and Knapsack Cover (KPs) Cuts.

(ii.) At step t = 0 of the CnP– instead of taking the linear relaxation of any X i – one can
already start from a strengthened version of these programs. In our tests, we strengthen
the coefficients in each Ai matrix and add some valid inequalities (e.g., root node cuts).
Dual presolve routines and fixed-costs fixing are generally discouraged since the objective
function is parametrized in x−i.

(iii.) If the ESO in Step 7 returns no, one can always add additional valid inequalities to
strengthen further the next X̃ i

t+1 set. Furthermore, some value cuts may not exhibit
a well-behaved numerical behavior (e.g., long fractional coefficients). One can always
separate a valid inequality that cuts off the incumbent solution (for the given player i)
and avoid using the value cut.

(iv.) The branching step in Step 15 triggers only when at least one of the players in G̃ has
an unbounded feasible set X̃ i. One can always find a disjunction on one or more integer
variables for the players and add it to the next X̃ i

t+1 set.
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5.6 Computational experiments

In this section, we present some implementation considerations and the numerical results
from our tests. We use an Intel Xeon Gold 6142, with 128GB of RAM and Gurobi 9.2 as
MIP (blackbox) solver, and PATH [56, 70] as an alternative LCPs solver in the IPGs tests.
The entirety of the time-related results is reported with a shifted geometric mean (shift of
10 seconds) to shield against outlier values. The implementation code is in [58]. Although
the CnP is quite generic, it manages to outperform game-specific methods on both IPGs and
NASPs.

NASPs tests. We configure the ESO (Algorithm 4) with ϵ = 10−5, a CnP timelimit of
300 seconds, and we use up to 12 cores for the CnP and the baseline. The testbed is the set
of instances InstanceSet B [31] (each instance has 7 Stackelberg leaders with up to 3 followers
each), and we introduce an even harder InstanceSet H7 (7 leaders up with 7 followers each).
As a baseline, we use the inner approximation (Inn), a problem-specific algorithm proposed
in [31]. In Table 5.1 we provide 3 different (geometric) means for the computing times in the
GT (s) columns. The first column is the type of algorithm: the baseline (Inn-S) (see [31]),
or the CnP (Out), with either the deviation branching (DB) or the hybrid one (HB). The
second and third columns are the instance set (Inst) and its cardinality (#), respectively.
The three subsequent pairs of columns report the computing time and the number of instances
for which the algorithm either (i.) found an MNE (EQ), (ii.) concluded no MNE exists
(NO_EQ), or (iii.) terminated without numerical issues (ALL). The last two columns report
the number of numerical issues (#NI) and time limits hits (#TL). Large NASP instances,
in particular the set H7, are generally badly scaled and are thus useful to test the numerical
stability of the algorithms. A clear pattern in Table 5.1 is the systemic failure of Inn-S-1 on
the set H7, where the algorithm fails due to the size of the descriptions of cl conv(X i). Inn

tends to exhibit significant numerical issues. On the contrary, the CnP performs consistently,
especially in the hard set H7.

5.6.1 IPGs tests

We configure the ESO with ϵ = 3 × 10−5, and the CnP timelimit being 300 seconds. The
baseline is the mSGM algorithm proposed in [32], which also provides the instances of the
Random Knapsack Game.

Instances. We use the Random Knapsack Game instances from Carvalho et al. [32], where
each player i solves a knapsack problem with m items as in (5.17). The objects vi, wi are
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Table 5.1 NASPs summary results.

Algo Inst # GT (s) # GT (s) # GT (s) #N #NI #TL
NASH_EQ NO_EQ ALL

Inn-S-1 B 50 6.22 49 69.76 1 6.56 50 0 0
Inn-S-3 B 50 4.94 49 23.96 1 5.12 50 0 0
Out-HB B 50 7.47 46 29.37 1 7.71 47 3 0
Out-DB B 50 9.45 46 11.81 1 9.50 47 3 0
Inn-S-1 H7 50 - 0 - 0 300.00 46 4 46
Inn-S-3 H7 50 - 0 - 0 - 0 50 0
Out-HB H7 50 53.79 41 - 0 73.45 50 0 9
Out-DB H7 50 52.58 35 - 0 88.92 50 0 15

integer vectors corresponding to the profits and weights. Also, W i is the knapsack capacity,
while Ci is a diagonal m× (n− 1)m matrix with integer entries. The elements on the diagonal
are the interaction coefficients associated with each of the (n− 1) other players in the game
and their m decision variables (in the lexicographic order given by each player’s index). We
remark that all such parameters are integer-valued, yet, they are not required to be positive.
In this game, each player i solves a knapsack problem where its profits vi may be decreased
or increased by the interactions given in Ci. Since this latter is a diagonal matrix, players
are mutually interacting only for corresponding items, for instance xi

j interacts with any x−i
j

for j ∈ {1, . . . , m}. A positive interaction coefficient between xi
j and xp

j in Ci – where p is
another player – boils down to a positive incentive for i when both xi

j and xp
j are equal to

1, namely both players are selecting the item. Analogously, if the interaction coefficient is
negative, i may be penalized in picking j if also p picks it. Formally, the model reads as

max
xi

(vi)⊤xi + (x−i)⊤Cixi (5.17a)

s.t. wixi ≤ W i, xi ∈ {0, 1}m. (5.17b)

Since each PAG has an MNE (X i is finite for any i), the CnP never branches but adds
MIP inequalities. Namely, the CnP purely acts as a cutting plane algorithm without ever
branching.

Setup. We possibly strengthen each player’s X̃ i with multiple rounds of GMIs, MIRs,
and KPs cuts (using [39]), and add other valid inequalities whenever the ESO returns no.
We aim to show MIP cuts are a pivotal ingredient of the CnP , and their integration improves
the algorithm’s performance. We test 4 levels of MIP cuts aggressivenes: −1 with no MIP
cuts, and 0, 1, 2 for more cutting planes at each iteration. We solve the LCPs with either:
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(i.) PATH, thus computing a feasible MNE , or (ii.) Gurobi, optimizing the quadratic social
welfare (SW ), namely the players’ payoffs sum.

Results. In Table 5.3 we present the computational results for our experiments, with
Table 5.4 being a similar table with percent changes concerning the baseline of m-SGM. The
first column is the algorithm’s type as defined previously. For the CnP , we also report which
solver handled the EquilibriumLCP. The second column (O) is the objective type, either
F for feasibility (e.g., an MNE) or Q for the quadratic objective. In particular, we use a
quadratic objective given by the sum of all players’ payoff, namely the so-called social-welfare
(SW ). The third column (C) reports the aggressiveness of the additional MIP cutting planes
generated. The column is set to −1 if we add no additional MIP cuts, and 0 if we add
such cuts whenever a value cut was numerically unstable (e.g., we could not transform the
coefficients to integer, or the coefficients ranged from 10−3 to 103). Otherwise, 1 is the higher
increasing levels of aggressiveness, namely where the CnP adds (multiple) MIP cuts even
when ESO cuts were added. For each set of instances, we report the number of players n, and
the number of items in each knapsack m. The fourth column reports the computing times
geometric mean (GeoT ) and the fifth column (#F ) reports the number of time-limit hits for
the associated algorithm. The remaining columns are mean average results for a series of
statistics. Specifically, in the sixth and seventh columns, we report the average social welfare
(SW ∗) and the average number of iterations (#IT ∗), respectively. The last four columns are
the average numbers of: (i.) all cuts added (Cuts∗), (ii.) The cuts added by the ESO, namely
the V-polyhedral cuts (V P ∗) in Step 13 of Algorithm 4, (iii.) value cuts added by the ESO
(V C∗) in Step 2 of Algorithm 4, (iv.) generic MIP cuts added (MIP ∗).

Highlights. A first clear pattern is an increase in the SW – in almost any instance set –
with the CnP algorithm. The m-SGM algorithm does find only an equilibrium, and so does
the CnP with PATH. Since the CnP exploits game’s relaxations, one can expect it will
find a possibly more favorable MNE . Whenever a MIP solver optimizes the welfare function,
there are dramatic improvements in the welfare. However, this may come at a cost in terms
of computing times, as highlighted in Table 5.4. In general, MIP solvers do not exploit
the underlying structure of LCPs, and we speculate this may cause such computing time
increases. In general, with PATH there are significant computing time improvements in all of
the instance sets except n = 2, m = 20. Furthermore, the more the cuts, the fewer iterations
of the CnP are required to converge to a feasible MNE . This seems to be the case for all
the instance sets. Interestingly, a greater aggressiveness of cuts tends to reduce the number
of V-polyhedral and value cuts in favor of more MIP cuts in almost all the instance sets.
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A plausible explanation is that the MIP cuts are generally generated by routines that are
more likely to result in stronger cuts for the mixed-integer hull than the ESO cuts. Finally,
whenever MIP cuts were completely disabled (C columns set to −1) we generally observe an
increase in computation time and average numbers of iterations.

Table 5.2 IPGs summary results.

Algo C t (s) MM T SW% OSW #It Cuts MIP

m-SGM 0.73 21.43 0 0.0% 27.0% 8.43 - -
CnP-MIP Q/-1 6.58 287.52 0 13.5% 37.0% 7.80 9.57 0.00
CnP-MIP Q/0 6.13 287.01 0 12.9% 37.0% 5.73 6.47 2.30
CnP-MIP Q/1 6.31 287.52 0 13.3% 37.0% 3.50 9.60 7.47
CnP-PATH F/-1 0.36 10.54 0 1.8% 27.0% 7.60 10.2 0.00
CnP-PATH F/0 0.05 0.19 0 2.9% 27.0% 5.27 5.90 2.07
CnP-PATH F/1 0.04 0.19 0 4.9% 27.0% 3.23 8.87 7.10

m-SGM 20.86 300.00 6 0.0% 25.0% 18.58 - -
CnP-MIP Q/-1 61.08 294.50 0 22.5% 40.0% 13.70 17.00 0.00
CnP-MIP Q/0 57.85 299.45 1 19.6% 40.0% 11.62 12.62 3.45
CnP-MIP Q/1 68.20 299.04 0 22.3% 38.0% 9.48 16.80 10.32
CnP-PATH F/-1 6.68 80.89 0 15.7% 28.0% 13.55 16.35 0.00
CnP-PATH F/0 4.48 74.37 0 15.7% 28.0% 9.62 10.25 2.42
CnP-PATH F/1 4.32 75.88 0 15.9% 28.0% 8.22 14.35 8.43

Finally, Table 5.2 provides an overview of the results by splitting the instances: the small
instances (with mn ≤ 80) in rows 2− 8, and the large ones (with mn > 80) in rows (9− 15).
The first two columns are the algorithm’s name, and the objective type and the MIP cut
aggressiveness as above. In column order, we report: the geometric mean time (t(s)), the
difference among the maximum and the minimum of time (MM), the number of time limits
(T ), and the improvement in social welfare with respect to m-SGM (SW%). We provide
the percentage of instances (OSW ) where the MNE ’s SW is at least 80% the optimal social
outcome (e.g., a solution, possibly not an MNE , where a planner independently decides to
maximize the SW ). In the last three columns, we report the average number of iterations
(#IT ), the total number of cuts (Cuts), and the separate number for MIP cuts (MIP ).
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Table 5.3 IPGs results in absolute values.
Algo O C GeoT (s) #F SW∗ #It∗ Cuts∗ VP∗ VC∗ MIP∗

n=3 m=10
m-SGM - - 2.11 0 632.99 10.00 - - - -
CnP-MIP Q -1 0.47 (0.23) 0 812.48 4.50 5.0 2.0 3.0 0.0
CnP-MIP Q 0 0.31 (0.14) 0 812.98 4.60 4.8 2.0 1.1 1.7
CnP-MIP Q 1 0.20 (0.08) 0 820.71 2.60 7.2 0.5 1.1 5.6
CnP-PATH F -1 0.02 0 706.66 5.00 5.9 2.0 3.9 0.0
CnP-PATH F 0 0.02 0 718.13 4.50 4.9 2.0 1.5 1.4
CnP-PATH F 1 0.03 0 742.87 2.00 5.4 0.3 0.7 4.4
n=2 m=20
m-SGM - - 0.01 0 658.31 5.40 - - - -
CnP-MIP Q -1 0.96 (0.25) 0 684.19 6.40 6.3 4.4 1.9 0.0
CnP-MIP Q 0 0.93 (0.29) 0 683.91 6.10 5.9 3.0 1.2 1.7
CnP-MIP Q 1 0.75 (0.18) 0 682.69 3.70 7.6 1.4 0.9 5.3
CnP-PATH F -1 0.05 0 645.44 5.30 5.5 3.1 2.4 0.0
CnP-PATH F 0 0.04 0 664.44 4.90 4.7 1.8 1.2 1.7
CnP-PATH F 1 0.03 0 656.44 3.10 6.2 1.2 0.4 4.6
n=3 m=20
m-SGM - - 0.20 0 1339.98 9.90 - - - -
CnP-MIP Q -1 29.74 (1.49) 0 1488.96 12.50 17.4 7.0 10.4 0.0
CnP-MIP Q 0 27.22 (0.66) 0 1473.46 6.50 8.7 4.0 1.2 3.5
CnP-MIP Q 1 29.61 (0.61) 0 1476.85 4.20 14.0 2.0 0.5 11.5
CnP-PATH F -1 1.04 0 1327.47 12.50 19.2 6.3 12.9 0.0
CnP-PATH F 0 0.08 0 1325.23 6.40 8.1 3.4 1.6 3.1
CnP-PATH F 1 0.07 0 1361.74 4.60 15.0 2.2 0.5 12.3
n=2 m=40
m-SGM - - 1.26 0 1348.56 13.70 - - - -
CnP-MIP Q -1 27.87 (5.11) 0 1433.13 16.70 21.9 11.1 10.8 0.0
CnP-MIP Q 0 25.58 (3.53) 0 1434.09 12.80 13.4 8.2 1.1 4.1
CnP-MIP Q 1 29.72 (2.16) 0 1405.30 10.50 18.7 6.4 0.7 11.6
CnP-PATH F -1 0.89 0 1355.26 16.80 20.7 9.5 11.2 0.0
CnP-PATH F 0 0.70 0 1355.01 10.00 9.9 7.1 0.8 2.0
CnP-PATH F 1 0.62 0 1355.21 7.80 14.1 5.1 0.3 8.7
n=3 m=40
m-SGM - - 27.04 2 2339.79 20.10 - - - -
CnP-MIP Q -1 140.33 (5.49) 0 2991.76 20.20 28.5 13.2 15.3 0.0
CnP-MIP Q 0 128.74 (3.06) 0 3016.22 11.60 15.6 8.9 1.9 4.8
CnP-MIP Q 1 162.20 (2.58) 0 2980.69 9.30 21.9 6.7 0.9 14.3
CnP-PATH F -1 2.35 0 2882.45 17.60 24.9 12.6 12.3 0.0
CnP-PATH F 0 0.87 0 2906.33 10.80 14.0 8.8 1.4 3.8
CnP-PATH F 1 0.79 0 2898.04 9.00 21.1 6.6 0.8 13.7
n=2 m=80
m-SGM - - 14.97 1 2676.52 19.40 - - - -
CnP-MIP Q -1 29.83 (11.47) 0 3127.96 7.60 6.7 5.4 1.3 0.0
CnP-MIP Q 0 27.02 (7.27) 0 3127.97 7.80 7.0 5.3 0.7 1.0
CnP-MIP Q 1 36.71 (10.06) 0 3124.63 6.10 8.6 3.6 0.5 4.5
CnP-PATH F -1 7.71 0 2914.36 8.80 8.1 6.7 1.4 0.0
CnP-PATH F 0 5.45 0 2926.82 7.00 6.1 4.5 0.4 1.2
CnP-PATH F 1 4.93 0 2936.52 5.80 7.4 3.4 0.4 3.6
n=2 m=100
m-SGM - - 77.13 3 2861.20 21.10 - - - -
CnP-MIP Q -1 102.57 (36.29) 0 3750.38 10.30 10.9 7.4 3.5 0.0
CnP-MIP Q 0 105.97 (33.07) 1 3454.41 14.30 14.5 9.4 1.2 3.9
CnP-MIP Q 1 107.04 (30.86) 0 3771.62 12.00 18.0 6.3 0.8 10.9
CnP-PATH F -1 23.02 0 3496.86 11.22 11.67 8.33 3.33 0.0
CnP-PATH F 0 14.46 0 3488.44 10.70 11.0 7.1 1.2 2.7
CnP-PATH F 1 14.56 0 3507.71 10.30 14.8 6.4 0.7 7.7
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Table 5.4 IPGs results (in percentage) with respect to the m-SGM. For GeoT (s), and #It,
the lower the better. As of SW ∗, the higher the better.

Algo O C GeoT (s) #F SW∗ #It∗ Cuts∗ VP∗ VC∗ MIP∗

m=3 n=10
m-SGM - - 0.00% 0 0.00% 0.00% - - - -
CnP-MIP Q -1 -77.68% 0 28.35% -55.00% 5.0 2.0 3.0 0.0
CnP-MIP Q 0 -85.45% 0 28.44% -54.00% 4.8 2.0 1.1 1.7
CnP-MIP Q 1 -90.77% 0 29.66% -74.00% 7.2 0.5 1.1 5.6
CnP-PATH F -1 -98.89% 0 11.64% -50.00% 5.9 2.0 3.9 0.0
CnP-PATH F 0 -99.18% 0 13.45% -55.00% 4.9 2.0 1.5 1.4
CnP-PATH F 1 -98.73% 0 17.36% -80.00% 5.4 0.3 0.7 4.4
m=2 n=20
m-SGM - - 0.00% 0 0.00% 0.00% - - - -
CnP-MIP Q -1 7247.90% 0 3.93% 18.52% 6.3 4.4 1.9 0.0
CnP-MIP Q 0 7084.17% 0 3.89% 12.96% 5.9 3.0 1.2 1.7
CnP-MIP Q 1 5634.50% 0 3.70% -31.48% 7.6 1.4 0.9 5.3
CnP-PATH F -1 268.26% 0 -1.95% -1.85% 5.5 3.1 2.4 0.0
CnP-PATH F 0 214.60% 0 0.93% -9.26% 4.7 1.8 1.2 1.7
CnP-PATH F 1 149.61% 0 -0.28% -42.59% 6.2 1.2 0.4 4.6
m=3 n=20
m-SGM - - 0.00% 0 0.00% 0.00% - - - -
CnP-MIP Q -1 14958.58% 0 11.12% 26.26% 17.4 7.0 10.4 0.0
CnP-MIP Q 0 13681.22% 0 9.96% -34.34% 8.7 4.0 1.2 3.5
CnP-MIP Q 1 14891.54% 0 10.21% -57.58% 14.0 2.0 0.5 11.5
CnP-PATH F -1 424.87% 0 -0.93% 26.26% 19.2 6.3 12.9 0.0
CnP-PATH F 0 -57.18% 0 -1.10% -35.35% 8.1 3.4 1.6 3.1
CnP-PATH F 1 -63.36% 0 1.62% -53.54% 15.0 2.2 0.5 12.3
m=2 n=40
m-SGM - - 0.00% 0 0.00% 0.00% - - - -
CnP-MIP Q -1 2111.71% 0 6.27% 21.90% 21.9 11.1 10.8 0.0
CnP-MIP Q 0 1929.94% 0 6.34% -6.57% 13.4 8.2 1.1 4.1
CnP-MIP Q 1 2258.44% 0 4.21% -23.36% 18.7 6.4 0.7 11.6
CnP-PATH F -1 -29.26% 0 0.50% 22.63% 20.7 9.5 11.2 0.0
CnP-PATH F 0 -44.36% 0 0.48% -27.01% 9.9 7.1 0.8 2.0
CnP-PATH F 1 -50.86% 0 0.49% -43.07% 14.1 5.1 0.3 8.7
m=3 n=40
m-SGM - - 0.00% 2 0.00% 0.00% - - - -
CnP-MIP Q -1 418.88% 0 27.86% 0.50% 28.5 13.2 15.3 0.0
CnP-MIP Q 0 376.04% 0 28.91% -42.29% 15.6 8.9 1.9 4.8
CnP-MIP Q 1 499.77% 0 27.39% -53.73% 21.9 6.7 0.9 14.3
CnP-PATH F -1 -91.31% 0 23.19% -12.44% 24.9 12.6 12.3 0.0
CnP-PATH F 0 -96.78% 0 24.21% -46.27% 14.0 8.8 1.4 3.8
CnP-PATH F 1 -97.07% 0 23.86% -55.22% 21.1 6.6 0.8 13.7
m=2 n=80
m-SGM - - 0.00% 1 0.00% 0.00% - - - -
CnP-MIP Q -1 99.30% 0 16.87% -60.82% 6.7 5.4 1.3 0.0
CnP-MIP Q 0 80.53% 0 16.87% -59.79% 7.0 5.3 0.7 1.0
CnP-MIP Q 1 145.29% 0 16.74% -68.56% 8.6 3.6 0.5 4.5
CnP-PATH F -1 -48.49% 0 8.89% -54.64% 8.1 6.7 1.4 0.0
CnP-PATH F 0 -63.56% 0 9.35% -63.92% 6.1 4.5 0.4 1.2
CnP-PATH F 1 -67.08% 0 9.71% -70.10% 7.4 3.4 0.4 3.6
m=2 n=100
m-SGM - - 0.00% 3 0.00% 0.00% - - - -
CnP-MIP Q -1 32.99% 0 31.08% -51.18% 10.9 7.4 3.5 0.0
CnP-MIP Q 0 37.40% 1 20.73% -32.23% 14.5 9.4 1.2 3.9
CnP-MIP Q 1 38.79% 0 31.82% -43.13% 18.0 6.3 0.8 10.9
CnP-PATH F -1 -70.16% 0 22.22% -46.81% 11.67 8.33 3.33 0.0
CnP-PATH F 0 -81.25% 0 21.92% -49.29% 11.0 7.1 1.2 2.7
CnP-PATH F 1 -81.12% 0 22.60% -51.18% 14.8 6.4 0.7 7.7
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5.7 Conclusions

The defining boundaries of this work are game theory and mathematical programming and
how they can effectively interact to improve the theory and practice of equilibria computation.
We strongly believe the joint endeavor between the disciplines can widen their theoretical
understanding and practical impact equilibria computation through a Branch and Cut
algorithm. We employ the concept of game’s approximation and extend it to a game by
building an increasingly tight sequence of approximations that eventually lead to an equilibrium
(or a non-existence proof). The amusing element of this approach is its interoperability with
standard mathematical programming tools, such as – and not restrictively – valid inequalities,
relaxations, disjunctions. Our approach does not necessarily exploit the specific structure of
any of the players’ problems, nor the game, and is in this sense generic. However, it stands
on the shoulder of the many “giants” ideas – theoretical and practical – that mathematical
programming offers. The CnP– even when compared to standard sample generation algorithms
or problem-specific ones – offers an appealing alternative for the efficient computation of
equilibria. We do believe the results reported should not constitute a barrier. On the
contrary, we prudently believe improvement opportunities lie ahead. The integration of
existing mathematical programming tools may indeed significantly advance this algorithmic
rationale. Moreover, and even more importantly, we hopefully foresee an increased interest
from this community towards developing new tools to tackle equilibria computation. The
open questions and possible extensions of this work are several. Nevertheless, we are quite
optimistic about such opportunities. This paper’s ultimate goal is to showcase – in the context
of MIP– that existing theory is of tremendous relevance for equilibria computation, also from
a practical standpoint. Among the many questions that arose through the making of this
work, we present four.

The polyhedral assumption. In the implementation of the ESO in Section 5.4.1, we
heavily leveraged what we called the polyhedral assumption on each player cl conv(X i). In
specific, we use this assumption to handle unboundedness through polyhedral cones. However,
we believe this should not be – in theory – restrictive. An improved separation oracle could –
for instance – leverage on second-order cones and drop the polyhedral assumption. For the
scope of this work, we showcased IPGs and NASPs, which are archetypical forms of RBGs.
Nevertheless, the polyhedral assumption may be dropped in favor of other well-structured
sets as soon as one may guarantee a finite termination of the associated enhanced separation
oracle.
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Inequalities. Except value-cuts, we mainly employed V-polyhedral inequalities and generic
MIP ones. However, we speculate there is room for developing new game-theoretical inequali-
ties, i.e., inequalities that account for more than one player’s variables. This may well exploit
some special or general structure of the game, and they are an auspicious direction of research
in the MIP context.

Rationality. A pivotal solution concept in game theory is the one of rationalizability,
introduced independently by Bernheim [14], Pearce [121]. The concept grounds in two main
assumptions: (i.) each player views its opponents’ choices as uncertain events, and thus
probabilistically assesses them (ii.) the players are individually rational, or in the context
of this paper they seek to optimize their payoff (objective function) as much as they can.
Whenever player i has to decide which strategy to pick, it faces uncertainty about other players’
choices. Thus, the choices of i must somehow reflect some beliefs the player has concerning
the strategies of its opponents. For instance, i may rule out the possibility of playing a
strategy that is never the best-response to any opponents’ strategy profile. However, i shall
play strategies that are best-responses to some opponents’ strategies and verify the validity
of these latter ones. Namely, i should also assess the strategies played by its opponents
are best-responses. In other words, we define a strategy as rationalizable only if it is a
best-response to some opponents’ beliefs, which in their turn are best-responses to some other
opponents’ beliefs, and so on.

In practice, a strategy is rationalizable for i if it can be rationalized with a sequence of
rationalizable behaviors of the opponents of i. In this sense, i holds a belief on the other
players’ strategies. namely, it associates a subjective probability distribution to its opponents’
strategies. MNEs themselves are rationalizable strategies were also the beliefs player i

associates to its opponents are rationalizable and exact. We turn our attention to the ESO,
and without loss of generality, we consider a generic player i and – for the sake of explanation
– we will assume X i is bounded (although this assumption is not restrictive). As previously
mentioned, the ESO builds an increasingly accurate description W i of cl conv(X i) by storing
the extreme points ext(cl conv(X i)) in V i. These points correspond to some best-responses
for i given its beliefs about the other players. One may wonder whether the strategies in
V i are rationalizable or not. The answer is generally negative. Consider an MNE σ̃ in
Algorithm 3, and the related call to the ESO in Step 7 for player i. The best-responses in
V i may not be rationalizable, disregarding the fact that the EO sampled them through the
solution of a series of parametrized mathematical programs for i. The issue here concerns the
values of the parameters σ̃−i of such programs, which may not be themselves rationalizable.
Although the best-response computation for i returns a feasible pure-strategy, the σ̃−i beliefs
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plugged in as parameters may themselves not be feasible mixed-strategies. In turn, at each
iteration, t of Algorithm 3, the strategies in support of σ̃ are rationalizable for the relaxation
G̃. Can we design specific routines to “select” rationalizable supports in an efficient way?
This question is somehow related to the works of Carvalho et al. [32], Porter et al. [124], which
in fact propose algorithms to sample rationalizable best-responses. These two approaches
seek to achieve feasibility (e.g., an MNE) by constructing a smaller approximation of the
original games where only a few strategies are present. Dichotomically, the CnP tries to
refine a loose approximation of the original game. In this context, better identification of
best-responses may lead to faster convergence and the development of new cutting planes
based on assumptions of rationality, somehow connecting to the first idea on inequalities. In
this sense, another important ground would be to establish what "valid" means in the context
of games and inequalities.

Tree and bounds. There is a clear connection between CnP and the Branch and Cut
algorithm of Padberg and Rinaldi [120]. Instead of solving a linear program – which is a
P-problem at least in theory –, the CnP leverages a series of LCPs which are well-known
NP-hard problems. This is not surprising for either IPGs or NASPs, which are Σp

2-hard in
practice. A natural extension of this work would be the creation of a search tree, where leaves
spring from the disjunctions in Step 15 of Algorithm 3. This approach hopes to find a feasible
MNE by possibly solving more constrained LCPs, and eventually enumerate equilibria. A
feasible MNE constitutes a valid upper bound for the problems. Nevertheless, it is not clear
how to use this information in the context of game relaxations. An efficient way to identify
non-improving – and thus fathomed – nodes would significantly improve the capabilities of
the CnP. The algorithm may then select the most favorable equilibrium among the possibly
many in a given game. However – in contrast with the Branch and Cut – we believe such
bounds relationships may be problem-specific and not general.
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CHAPTER 6 ARTICLE 1: WHEN NASH MEETS STACKELBERG

Authors: Margarida Carvalho, Gabriele Dragotto, Felipe Feijoo, Andrea Lodi, and Sriram
Sankaranarayanan.
Submitted to Management Science1.

Abstract We analyze a class of simultaneous non-cooperative games among the leaders
of Stackelberg Games (NASP) and their application in energy markets. In a NASP, each
leader solves a linear bilevel program with quadratic convex followers subject to the standard
optimistic assumption. From a complexity theory perspective, we prove it is Σp

2-hard to
decide both if the game has a pure-strategy (PNE) or a mixed-strategy Nash equilibrium
(MNE). We provide a finite algorithm that computes exact MNEs for NASPs or returns
a non-existence certificate if no MNE exists. We enhance this algorithm with an inner
approximation hierarchy that increasingly grows the description of each Stackelberg leader’s
feasible region. Furthermore, we extend the algorithmic framework to retrieve a PNE , if
one exists. Finally, we provide extensive computational tests on a range of NASPs instances
inspired by international energy trades and a real-world study on a simplified version of the
Chilean-Argentinian energy market.

6.1 Games, Definitions, ad Overview

Optimization frameworks embedding Game Theory dynamics can model complex interactions
among multiple agents and are powerful tools for real-world applications. Their effectiveness
relies on two key ingredients. First, their modeling capabilities and the ease of interpretability
of such models. Second, the efficiency of the underlying algorithmic arsenal available to solve
these models. In this paper, we provide models, algorithms, and theoretical insights for a
class of non-cooperative, simultaneous games between the leaders (i.e., the first-level players)
of bilevel programs with an optimistic followers’ response. In other words, Stackelberg games’
leaders are playing a Nash game among themselves with complete information. We call such
problems Nash Games among Stackelberg Leaders (NASPs), schematically represented in
Figure 6.1. NASPs are part of the well-known family of Equilibrium Problems with Equilibrium
Constraints (EPECs) that has a wide variety of applications in energy markets. A concise
representation of an elementary (or trivial, as more formally defined in Definition 17) NASP
between a Latin Stackelberg game and a Greek Stackelberg game is given by

1A pre-print is available in [31].
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Figure 6.1 A schematic representation of a NASP. The vertical arrows are Stackelberg
interactions (i.e, sequential decisions), while the horizontal ones are Nash interactions (i.e,
simultaneous decisions).

Latin Leader

min
x,y

: cT x + dT y +
G

 ξ

χ

T  x

y

 (6.1a)

subject to Ax + By ≤ b (6.1b)

y ∈ arg min
y

{
fT y : Qy ≤ g − Px

}
(6.1c)

Greek Leader

min
ξ,χ

: αT ξ + βT χ +
Γ

 x

y

T  ξ

χ

 (6.1d)

subject to Φξ + Ψχ ≤ ρ (6.1e)

χ ∈ arg min
χ

{
ϕT χ : Ωϕ ≤ γ − Πξ

}
. (6.1f)

On the one hand, the Stackelberg leaders interact through their objective functions, as in
(6.1a) and (6.1d). On the other hand, within each Stackelberg game, each leader anticipates
the reaction of their distinct followers, each of which solves a lower-level parametric linear
program. In general, NASPs can (as we will later show): (i) have more than two leaders,
(ii) have more than one follower per leader, (iii) have the followers of each leader interact in a
Nash game, and (iv) enforce each follower to solve a convex quadratic program as opposed to
linear programs like in (6.1c) and (6.1f). In Game Theory, a dominant solution concept is
the one of Nash equilibrium — namely, when each player cannot profitably and unilaterally
deviate from the prescribed equilibrium strategy. In this paper, we provide theory and
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algorithms concerning the Nash equilibria of NASPs.

Applications. NASPs, in their full generality, could solve a wide range of problems. We
outline three different potential applications related to energy, vaccines, and insurances. In
this work, we are primarily motivated to model international energy markets with climate
change-aware regulatory authorities and profit-maximizing domestic energy producers, and we
provide a game-theoretic framework to analyze this problem. In this game, energy producers –
namely the Stackelberg followers – compete in the domestic market and are usually subject
to restrictions in the form of tax and caps from the regulatory authorities. The regulatory
authorities – namely the Stackelberg leaders – negotiate environmental-conscious agreements
for energy trade, thus engaging in a Nash game. The NASP theoretical abstraction models
this problem and provides a general framework to analyze games, in and outside the energy
domain, when there are multiple Stackelberg leaders, each with their set of followers, playing
a Nash game with each other.
Similarly – yet in a different context – NASPs can model a complex drug trade system.
For instance, at the time of writing, the COVID-19 vaccine production and trade situation
pose severe threats to the world’s immunization programs and may lessen inter-country
cooperation with the so-called vaccine nationalism [145]. In several cases, countries threatened
and successfully blocked vaccine exports while also imposing strict regulations on indigenous
producers [17, 18, 73]. In this scenario, the homogeneous good would be the vaccine, and in
analogy to emission factors, we would see efficacy properties. Countries act as Stackelberg
leaders, regulating vaccines’ trade and incentivizing indigenous producers (followers). Further,
the leaders’ objectives could model a wide variety of tactical requirements, e.g., prioritize the
production of some doses reserved for vulnerable classes, incentivize the exports of prioritized
doses to neighboring countries, prioritize more effective vaccines.
Finally, as a third example, we draw attention to the insurance business. Users of a given
good may be subject to disruptions (e.g., cyberattacks for energy generators) and may need
to contract insurance services [34, 80]. Insurers – namely Stackelberg leaders – provide such
services at a cost to their clients – or followers. The NASP framework extends this hierarchical
model to a multi-insurer setting, introducing a mechanism of re-insurance. In plain English,
the leaders mutually protect their insurances’ portfolios, shielding them against large-scale
disruptions (e.g., natural disasters). With these motivating examples, we now detail our
primary contributions.
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Primary Contributions

First, we characterize the computational complexity of deciding if a given instance of NASP
has a pure-strategy Nash equilibrium (PNE). Even with restrictive assumptions – such as
single follower and bounded strategy sets for all players – we show it is Σp

2-hard to decide
if the instance has a PNE . Namely, even with oracle access to solve NP-hard problems
instantaneously, there would be exponentially many calls to such an oracle to decide the
existence of a PNE for a given instance of NASP. In other words, without substantial
consequences in complexity theory, this translates to a bound of Ω(22n) elementary operations
required to solve the problem, where n is the size of the representation of the corresponding
decision problem. This is quite surprising since, in most literature cases, one can either prove
that all games in a considered category have a PNE or prove sufficiently fast that a given
instance has no PNE . Second, we consider the computational complexity of deciding the
existence of a mixed-strategy Nash equilibrium (MNE) for NASPs. We demonstrate that
with exactly one follower for each leader and boundedness in every player’s problem, an MNE
always exists (Corollary 1). However, if at least one of the leaders has an unbounded feasible
set, it is again Σp

2-hard to decide the existence of an MNE .

Third, given these lower bounds to computationally find PNE or MNE for NASPs, we provide
a finite-time algorithm to do so. It retrieves an MNE for an instance of NASP when it exists
and provides a (double exponentially-large) proof of infeasibility when an MNE does not
exist. To the best of our knowledge, this is the first algorithm to identify MNE or PNE for a
game of this type. Fourth, we provide an enhancement to the algorithm to exclusively seek
PNEs, or provide proof of infeasibility. This is the case of interest if mixed-strategies are
not implementable in practice. Fifth, we provide another enhancement to the algorithms to
find MNEs and PNEs, with an iterative inner-approximation procedure that proves to be
considerably faster in practice. We also remark that the negative results (Σp

2-hard complexity)
are for the easier version of the problem (the latter defined trivial NASP), and our positive
algorithmic results extend, on the contrary, for the harder version of the problem with multiple
followers. Besides, we also present several observations, for instance, Remarks 3 and 5, that
shed light on equilibria for Nash games where players solve non-convex optimization problems.

We believe that the above contributions, both from the complexity and algorithmic (compu-
tational) sides, establish a solid benchmark for future progress.

Literature Review

Nash [116, 117] introduced the concept of Nash Equilibrium in the context of simultaneous
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n-person games, also known as Nash games in the optimization literature. A Nash equilibrium
always exists in games with a finite number of players and a finite number of strategies. By
definition, these equilibrium strategies ask that no player has an incentive to unilaterally
deviate from the prescribed strategy. Generally, we distinguish between the pure strategy
Nash equilibrium (PNE) and the mixed strategy one (MNE). The latter generalizes the pure
one since each strategy in the support of the equilibrium has an associated probability of being
played. The Nash equilibrium concept extends to games where players have an uncountable
set of strategies. From an application perspective, interactions within economic markets
extensively adopt Nash Games as a modeling paradigm. For instance, gas market bilevel
formulations usually involve players solving convex optimization problems parametrized in
other players variables [61, 62, 68, 69, 88, 134, 141]. On the other side, the cross-border
kidney exchange model [28], competitive lot-sizing models [30, 104], and the fixed charge
transportation model [131] feature players solving non-convex problems.

In contrast with Nash games, sequential ones partition the players into different groups, and
each group decides in a round – or level. If the rounds are two, then the game is known
as Stackelberg game [23, 139]. Here, the agents playing in the first round are the leaders,
while the ones playing afterward are called followers. When each Stackelberg player solves
an optimization problem, then we have a bilevel program. In general, bilevel formulations
can model interactions where leaders have specific advantages over the followers, such as
government taxing companies. Indeed, bilevel formulations allure a nourished community of
researchers. Bard et al. [11, 12] model tax credits strategies in the context of biofuel production,
and Brotcorne et al. [22], Labbé and Violin [99] create bilevel pricing problems. Feijoo and
Das [66], Gabriel and Leuthold [74], Hobbs et al. [87] model pricing and environmental policies
for energy markets, where power generators are leaders, and network operators are followers.

When multiple leaders – each with possibly multiple followers – seek an equilibrium between
each other, we fall into the category of EPEC s. Thereby leaders often have a common set of
followers, and the equilibrium of interest is PNE . Sherali [136] introduced EPEC s where both
leaders and followers produce a homogeneous commodity, and followers adopt a reaction curve.
Gabriel et al. [75] provides a Gauss-Seidel iteration technique to find PNEs for a restricted
class of EPEC s, where followers from distinct leaders can interact. Ralph and Smeers [125],
and Hu and Ralph [89] extend the analysis on the existence of a PNE to specialized classes of
EPEC s arising in electricity markets. Leyffer and Munson [103] introduces a weaker solution
concept based on a nonlinear programming reformulation. DeMiguel and Xu [52] craft the
concept of stochastic multi-leader Stackelberg-Nash-Cournot equilibrium for a particular
form of investment-production interaction between the players. More recently, Kulkarni and
Shanbhag [97, 98] considered EPEC s with shared constraints, presenting solution concepts
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and algorithms starting from the potentiality of players’ objectives.

Complexity of Equilibria. As previously mentioned, Nash [116, 117] proved that a
Nash equilibrium for finite games always exists, and thus the associated decision problem
is trivial. However, since the proof is non-constructive, it already unveils the difficulty of
computing an equilibrium. Indeed, even for two-players finite games in strategic form, the
problem of determining an equilibrium is PPAD-complete [36]. Furthermore, even for games
where equilibria are guaranteed to exist, many variations of associated decision problems are
known to be NP-complete [76]. A few illustrative examples are the existence of two equilibria
or the existence of an equilibrium where a player’s payoff exceeds a given threshold. Besides,
Carvalho et al. [29, 32] proved the existence of PNE and MNE for games where players solve
parametrized non-convex problems to be Σp

2-hard. Under this setting, if players’ strategies
are bounded, then an MNE always exists. For congestion games, another widely studied
class of Nash games, PNEs always exist due to their potential nature [128]. [51] focus on
congestions games where totally unimodular matrices describe the players’ strategies. Within
this context, the authors prove that if players have the same feasible set of strategies, a PNE
can be computed in polynomial time. In any other case, the problem is PLS-complete. For
what concerns Stackelberg games’ complexity, the seminal result of Jeroslow [90] enlightens
the matter. It proves that sequential games’ computational complexity rises one layer up in
the polynomial hierarchy for every additional round, even for linear problems. Thereupon,
the classification of the computational complexity for NASPs becomes almost natural.

Paper Organization. We organize the manuscript as follows. Section 6.2 provides
definitions and restates some known results. Section 6.3 provides the complexity results
regarding NASPs. Section 6.4 presents an algorithm to find MNE for NASP, proving its
finiteness and correctness. Section 6.5 builds on top of the developed algorithm by extending
it with an inner approximation hierarchy and introduces a heuristic for computing PNE .
Section 6.6 presents computational tests, and, finally, Section 6.7 draws conclusions.

6.2 Preliminaries

In this section, we provide definitions, notations and recall some known results in the context
of polyhedral theory, Nash games, and Stackelberg games.
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6.2.1 Definitions

Nash Games. When players decide simultaneously, and with complete information, we
have a Nash Game. As a standard notation in game theory, let the operator (·)−i denote (·)
except i.

Definition 11 (Nash games). A Nash game P among n players is a finite tuple of optimization
problems P = (P 1, . . . , P n), where each P i is the problem of the ith player. Simultaneously,
each player i solves an optimization problem of the form minxi∈Rni{f i(xi; x−i) : xi ∈ Fi},
where f i and Fi are their objective function and the feasible set, respectively.

We can further characterize a Nash game as (i) simple if, for every player i and for some positive
semi-definite matrix Qi, a real vector ci, and a real matrix Ci of appropriate dimensions,
the objective function is in the form of f i(xi; x−i) = 1

2xiT
Qixi + (ci + Cix−i) xi, (ii) linear, if

Qi = 0 for all i, namely each leader has a linear objective function, (iii) facile, if the game is
simple, and Fi is a polyhedron for all i = 1, 2, . . . , n.

Definition 12 (Simple parameterization). An optimization problem in y has a simple param-
eterization with respect to x ∈ Rnℓ if the problem is in the form of miny∈Rnf {f(y) + (Cx)T y :
y ∈ F , Ax + By ≤ b}, where f : Rnf → R, and C, A, B, b are matrices and vectors of
appropriate dimensions, and F ⊆ Rnf .

A Nash game P = (P 1, . . . , P n) has a simple parameterization with respect to x ∈ Rnℓ if each
optimization problem P 1(x), . . . , P n(x) has a simple parameterization with respect to x.

Definition 13 (Mixed and Pure-strategy Nash equilibria). Let ν = (ν1, . . . , νn) where
νi is a Borel probability distribution on Fi with finite support. Then, ν is a MNE if
E(f(νi, ν−i)) ≤ E(f(x̃i, ν−i)) for any player i and x̃i ∈ Fi. If all the distributions have a
singleton support, then the set of strategies is referred to as PNE.

PNE is a strong notion of equilibrium, and even relatively trivial games – such as rock-
paper-scissors – may not possess one. In contrast, an MNE always exists for finite games
[116, 117].

Stackelberg Games. A Stackelberg game is a multi-level game with 2 rounds of decisions.
First, the leader decides, optimizing their objective subject to some constraints. Then, the
followers decide, with their objective and constraints now depending upon the leader’s decision
[24].
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Definition 14 (Stackelberg game). Let P (x) be a Nash game with a simple parametrization
with respect to x, let SOL(P (x)) denotes its solution set, and define f : Rnℓ+nf → R. Then, a
Stackelberg game is an optimization problem of the form min

x∈Rnℓ ;y∈Rnf
{f(x, y) : (x, y) ∈ F , y ∈

SOL(P (x))}.

In a Stackelberg game, the set SOL(P (x)) is parametrized given the leader’s strategy x.
Namely, given an upper-level strategy x, the followers should play optimally. Each Stackelberg
game’s solution is then a Subgame Perfect Nash-Equilibrium (SPNE). For the purposes of this
work, we only consider SPNEs. The previous definition implies the Stackelberg game to be
optimistic. Namely, if the game has multiple optimal solutions SOL(P (x)), then y takes the
value among SOL(P (x)) benefitting the leader the most. Suppose P (x) is an optimization
problem (i.e., one follower). In that case, the optimistic assumption is natural: the leader – by
incentivizing the follower with an arbitrarily small amount (e.g., a payment) – can persuade
the follower to choose the most favorable solution (according to the leader). In general, when
there are multiple followers, this optimistic assumption could be a strict restriction since the
followers’ equilibrium may not be unique. However, the optimistic assumption on the bilevel
solution selection is not restrictive in our work, since the followers’ equilibrium is unique.
Since the followers of each NASP’s leader play a Nash-Cournot game with strictly convex
objective functions, each lower-level equilibrium is unique.

Definition 15 (Simple Stackelberg game). A Stackelberg game P is simple if P (x) is a facile
Nash game with a simple parameterization with respect to the upper-level variables x, F is a
polyhedron, and f(x, y) is a linear function.

Definition 16 (NASP). A NASP is a linear Nash game N = (P 1, . . . , P k) where for each i,
P i(xi) is a simple Stackelberg game.

Combining Definition 11, 12 and 14 to 16, a NASP refers to the following game. There is a
set L of players called the leaders, each of which has a set F of second-level players called the
followers. We will use the term players to point to the Stackelberg games associated to each
leader. Each follower f ∈ F has a unique leader ℓ(f) ∈ L, such that the objective function
and the feasible set of the follower f depends only upon the decision variables of ℓ(f) and
other followers f ′ ∈ F such that ℓ(f ′) = ℓ(f). In other words, each follower interacts with the
followers having the same leader, and not with followers from other leaders. We assume both
leaders’ and followers’ parameters are common information. First, with complete anticipation
of their followers’ behavior and simultaneously, every leader ℓ ∈ L chooses their decision to
maximize their utility. Then, every follower f observes their respective leader’s (i.e., ℓ(f)’s)
decision, and every follower simultaneously chooses their decision by maximizing their utility.
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We assume an optimistic behavior from the followers in the sense that – if there are multiple
optimal strategies for the followers over which they are indifferent – they will choose the
strategy which benefits their leader the most.

Definition 17 (Trivial NASP). A trivial NASP is a NASP where k = 2, and P 1 and P 2 are
simple bilevel games whose lower levels are linear programs with a simple parameterization
with respect to the upper-level variables.

The additional assumptions holding on a trivial NASP (as of Definition 17) compared to a
general NASP (as of Definition 16) are seemingly strong. We require that each leader has
precisely one follower – as opposed to finitely many followers – and that each follower solves a
linear program – as opposed to a quadratic program – with a simple parameterization with
respect to the upper-level variables. For instance, the game between the Latin and Greek
leaders presented in (6.1) is an example of trivial NASP. Also, in NASPs with lower-level
facile Nash Games, the feasible region for the followers are convex, and the leaders’ objective
functions are convex in xi. As a consequence, the existence of a PNE is guaranteed whenever
the feasible regions are compact [50, 65, 78]. Therefore, one can solely search for PNEs among
the followers despite considering both MNEs and PNEs among the leaders.

In the optimization literature, Nash games often reformulate as Linear Complementarity
Problems (LCPs). This reformulation leverages the complementarity conditions induced by
the optimality conditions (i.e., the KKT conditions) of the players’ optimization problems.
LCPs have a rich theoretical basis [46, 63], and can be formulated as mixed-integer programs
(MIPs). Following the usual notation, let operator x ⊥ y be equivalent to xT y = 0.

Definition 18 (Linear complementarity problem). Given M ∈ Rn×n, q ∈ Rn, the linear
complementarity problem (LCP) asks to find a x ∈ Rn so that 0 ≤ x ⊥ Mx + q ≥ 0, or to
show that no such x exists. We denote as the feasible set induced by the LCP the set of all x

satisfying the condition of the LCP.

Simplifying assumptions and limitations. We summarize the assumptions made on
NASPs. First, a NASP is a game among leaders of Stackelberg games, each with a specific
set of followers. The actions of the followers of a given leader do not directly affect another
leader, or followers of a different leader. Second, we assume optimistic behavior by the leader.
Given a leader’s decision, should there be multiple equilibria for the followers, the leader will
choose the most favorable equilibrium from its standpoint. This also has consequences for
the upcoming results about the absence of equilibria. When we state that a NASP does not
have an equilibrium (either a PNE or an MNE), our claim is as follows: should the leaders
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always select the most favorable lower-level equilibrium, no equilibrium exists among the
leaders. Thus, if the leader does not select the most favorable equilibrium among the followers,
an equilibrium among the leaders might exist. In this sense, we consider non-optimistic
equilibrium selection by the leaders to be beyond the scope of this work.

6.2.2 Existing Results

We introduce a series of known results we will later use to provide theoretical and algorithmic
contributions. Cottle et al. [46] proves that a facile Nash game can be restated as an LCP.

Theorem 6 (Cottle et al. [46]). Let P be a facile Nash game. Then, there exists a matrix M

and a vector q such that every solution to the LCP defined by M, q is a PNE for P and every
PNE of P solves the LCP.

Basu et al. [13], with Theorem 7, provide an extended formulation for the feasible region of a
simple Stackelberg game. This result is a critical ingredient of our contribution, since it will
enable us to provide a polyhedral characterization NASPs.

Theorem 7 (Basu et al. [13]). Let S be the feasible set of a simple Stackelberg game. Then,
S is a finite union of polyhedra. Conversely, let S be a finite union of polyhedra. Then, there
exists a simple Stackelberg game with P (x) containing exactly 1 player such that the feasible
region of the simple Stackelberg game provides an extended formulation of S.

Finally, the celebrated Theorem 8 from Balas [8] provides an extended formulation for the
closure of the convex hull for the union of a finite set of polyhedra.

Theorem 8 (Balas [8]). Given k polyhedra Si = {x ∈ Rn : Aix ≤ bi} for i = 1, . . . k, then
cl conv(⋃k

i=1 Si) is given by the set {x ∈ Rn : ∃(x1, . . . , xk, δ) ∈ (Rn)k × Rk : x ∈ {Aixi ≤
δib

i,
∑k

w=1 xw = x,
∑k

w=1 δw = 1, δi ≥ 0,∀i ∈ [k]}}.

6.3 Hardness of Finding a Nash equilibrium

In what follows, we characterize the computational complexity of NASPs. We formalize
the intuition stemming from Jeroslow [90] with a reduction from the SUBSET SUM INTERVAL
problem. The main results are summarized below.

Theorem 9. It is Σp
2-hard to decide if a trivial NASP has a PNE.

Corollary 1. If each player’s feasible set in a trivial NASP is a bounded set, an MNE exists.
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Theorem 10. It is Σp
2-hard to decide if a trivial NASP has an MNE.

In what follows, we will provide the proof of Theorems 9 and 10. First, we formally introduce
the SUBSET SUM INTERVAL.

Definition 19 (SUBSET SUM INTERVAL). Given q1, . . . , qk, p, t, k ∈ Z+, with none of them
equal to zero, and log2(t − p) ≤ k, does there exist a s ∈ Z : p ≤ s < t, so that for all
I ⊆ {1, 2, . . . , k} then ∑

i∈I qi ̸= s.

In other words, we seek – within an interval of integers – for a number s that cannot be
expressed as a sum of a subset of {q1, . . . , qk} or alternatively show that no such s exists.
Here, t − p can be chosen as a power of 2. For instance, we may ask if there exist an r in
∈ Z+ such that 2r = t− p. Eggermont and Woeginger [60] proven that, given r in Z+ such
that t− p = 2r, the problem is Σp

2-hard.

Theorem 11 (Eggermont and Woeginger [60]). Given that there exists r ∈ Z+ such that
t− p = 2r, SUBSET SUM INTERVAL is Σp

2 hard.

Proof of Theorem 9. To show the hardness of NASP, we will rewrite SUBSET SUM INTERVAL
as a trivial NASP of comparable size. Then, appealing to Theorem 11, we establish the
hardness of a trivial NASP. Finally, we claim that NASP is only a generalization of trivial
NASP, which could not be any easier.

Consider a trivial NASP as of in Definition 17. For the sake of clarity, we call the two
Stackelberg games associated with the trivial NASP the Latin, and Greek game, respectively.
The decision variables of the Latin game’s leader are x, and their follower controls y variables.
Similarly, the decision variables of the Greek game are ξ, and χ for their follower. As for the
SUBSET SUM INTERVAL, we stick to the notation introduced in Definition 19.

Let b1, . . . , br ∈ {0, 1} as the unique r-bit binary representation of s− p: for instance, {bi}r
i=1

satisfies s− p = ∑r
i=1 bi2i−1. Then, let P = k + 2r, Q = ∑k

i=1 qi, and T = t− 1 + rQ, where
both can be computed in polynomial time with respect to the data in SUBSET SUM INTERVAL.
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The Latin Game.

max
x0,x1,...,x2P

∈R
y0,y1,...,y2P

∈R

: (T − 1)ξ0x0 +
k∑

i=1
qiξixP +i + Q

P∑
i=k+1

ξixP +i (6.2a)

subject to xi = 0 i = 1, . . . , k (6.2b)

yi ≥ 0 i = 1, . . . , 2P (6.2c)

xi ≥ 0 i = 1, . . . , 2P (6.2d)
P∑

i=k+1
xi ≤ r (6.2e)

xi + xP +i ≤ 1 i = 1, . . . , P (6.2f)

x0 + xP +i ≤ 1 i = 1, . . . , P (6.2g)

(y0, . . . , y2P ) ∈ arg min
y


2P∑
i=0

yi :
yi ≥ −xi

yi ≥ xi − 1
∀ i = 0, . . . , 2P

 (6.2h)

The Greek Game.

max
ξ0,ξ1,...,ξP

∈R
χ0,...,ξP

∈R

: (T − 1)ξ0 +
k∑

i=1
qiξi(1− xP +i) + Q

P∑
i=k+1

ξi(1− xi − xP +i)

+
k+r∑

i=k+1
2i−k−1ξi(1− xi − xP +i)−

P∑
i=k+1

T (xiξi + (1− xi)(1− ξi − ξ0)) (6.2i)

subject to ξi ≥ 0 ∀ i = 0, . . . , P (6.2j)

ξi ≤ 1 ∀ i = 0, . . . , P (6.2k)

χi ≥ 0 ∀ i = 0, . . . , P (6.2l)
P∑

i=k+1
ξi + rξ0 ≥ r (6.2m)

T ≥ Tξ0 +
k∑

i=1
qiξi + Q

P∑
i=k+1

ξi +
k+r∑

i=k+1
2i−k−1ξi (6.2n)

(χ0, . . . , χP ) ∈ arg min
χ


P∑

i=0
χi :

χi ≥ −ξi

χi ≥ ξi − 1
∀ i = 0, . . . , 2P

 (6.2o)

We claim the game in (6.2) has a PNE , if and only if the SUBSET SUM INTERVAL instance
has a decision YES.



83

Claim 1. The game defined in (6.2) is a trivial NASP.

Claim 2. The region in the space of x defined by (6.2c) and (6.2h) is the Cartesian product of
({xi : xi ≤ 0} ∪ {xi : xi ≥ 1}), for i = 0, . . . , 2P . Similarly, the region in the space of ξ defined
by (6.2l) and (6.2o) is the Cartesian product of ({ξi : ξi ≤ 0} ∪ {ξi : ξi ≥ 0}), for i = 0, . . . , P .

We refer the reader to appendix B.1 for the proofs of Claims 1 and 2.

Claim 3. If
(
(x̄, ȳ), (ξ̄, χ̄)

)
is a PNE for (6.2), then ξ̄0 ̸= 0.

Proof of Claim. First, observe that ξ ̸= 0, since setting ξ0 = 1 is a feasible profitable deviation
for the Greek leader, regardless of the Latin leader’s decision. Suppose ξ̄0 = 0 and for some
∅ ̸= L ⊆ {1, . . . , P}, ξℓ ̸= 0. Note that the Latin leader has no incentive to keep x̄0 = 1,
which forces an objective value of 0. Instead, it can choose x̄0 = 0, and x̄P +ℓ = 1 for all ℓ ∈ L

and any feasible value for x̄P +ℓ for ℓ ∈ {1, . . . , P} \ L. One can check that this is feasible
and optimal for the the Latin leader, given ξ̄0 = 0. This also means that the Greek leader’s
objective is 0, as each of the summands in their objective vanishes, and ξ̄0 = 0 makes the first
term vanish. Hence, this cannot be a Nash equilibrium since the Greek leader has a profitable
deviation by setting ξ0 = 1 and ξi = 0 for all i ̸= 0, which is feasible and yields an objective
value of T − 1 > 0.

Claim 4. If SUBSET SUM INTERVAL has decision YES, then (6.2) has a PNE.

Proof of Claim. Suppose there exists s ∈ Z+ such that p ≤ s ≤ t − 1, and for all I ⊆
{1, . . . , k}, ∑i∈I qi ≠ s. Also, recall the unique r-bit binary representation of s− p, namely
b1, . . . , br ∈ {0, 1}. Consider the following strategy:

x0 = 1 (6.3a)

xi = 0 ∀ i = 1, . . . , k (6.3b)

xi = bi−k ∀ i = k + 1, . . . , k + r (6.3c)

xi = 1− bi−k−r ∀ i = k + r + 1, . . . , P = k + 2r (6.3d)

xi = 0 ∀ i = P + 1, . . . , 2P (6.3e)

yi = 0 ∀ i = 0, . . . , 2P (6.3f)

ξ0 = 1 (6.3g)

ξi = 0 ∀ i = 1, . . . , P (6.3h)

χi = 0 ∀ i = 1, . . . , P (6.3i)
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It is easy to check that the strategy in (6.3) is feasible. Given ξ, observe that the strategy is
optimal for the Latin leader as follows. Due to the choice ξi = 0 for i ̸= 0, all but the first
term of the Latin leader vanish. The largest value the first term can take corresponds to
x0 = 1. The remaining terms do not affect the Latin leader’s objective, as long as they are
feasible.

For what concerns the Greek leader, the current objective is T − 1. We show there exist
no deviation which can improve their objective. With ξ0 = 1, clearly no other deviation is
feasible. Consider the deviation ξ0 = 0: with such strategy the first term in the objective
vanishes. Let M = {i ∈ {k + 1, . . . , k + 2r} : x̄i = 1}. Observe that |M | = r, and let
L = {k + 1, . . . , k + 2r} \M . Notice that we require ξℓ = 1 for ℓ ∈ L, otherwise the fifth term
in the objective would be a large negative quantity. Hence, the objective would not exceed the
value of T −1. With such a choice of ξℓ for ℓ ∈ L, the fifth term in the objective evaluates to 0,
and the fourth term evaluates to∑ℓ∈L 2ℓ−k−i = ∑k+r

i=k+1(1−bi−k)2i−k−1 = 2r−1+p−s = t−1−s.
Therefore, the objective value is t− 1 + rQ− s. However, since it is a YES instance of SUBSET
SUM INTERVAL, the deficit s in the objective value can never be made up by any choice of ξi

for i = 1, . . . , k and by making the second term equal to s. If such ξi are chosen to exceed
s, then (6.2n) is violated if it is strictly less than s, and the objective cannot exceed T − 1.
Hence, this is no longer a valid deviation. Thus (6.3) is indeed a Nash equilibrium.

Claim 5. If SUBSET SUM INTERVAL has decision NO, then (6.2) has no PNE.

Proof of Claim. We prove the result by contradiction. In orter to establish the latter,
assume that the SUBSET SUM INTERVAL instance has an answer NO, and there exists a PNE(
(x̄, ȳ), (ξ̄, χ̄)

)
for (6.2), with ξ̄0 = 1. From Claims 3-2, any PNE necessarily has ξ0 = 1.

From (6.2n), ξ̄0 = 1 enforces that ξ̄i = 0 for i = 1, . . . , T , and hence the Greek leader has an
objective value of T − 1. Therefore, with ξ̄ =

(
1 0 . . . 0

)
, observe that the Latin leader’s

objective is (T − 1)x0. Thus, we necessarily have x̄0 = 1. From (6.2g), we deduce x̄P +i = 0
for i = 1, . . . , P , while from (6.2e) we obtain x̄i ≤ r

r+1 for i = 1, . . . , k. The only value of x̄i

that satisfies this condition along with (6.2h) is x̄i = 0 for i = 1, . . . , k That only leaves x̄i for
i = k + 1, . . . , k + 2r = P . We can now show that – for any value of x̄i – the Greek leader
has a profitable deviation. Namely, it can get an objective strictly greater than T − 1. Let
M = {i ∈ {k + 1, . . . , k + 2r} : x̄i = 0}. From (6.2e), we have |M | ≥ r. We choose some
L ⊆M such that |L| = r, and for i ∈ L, we set ξ̄i = 1. Since |L| = r, and L ⊆M , the third
term in the Greek leader’s objective evaluates to rQ. The fourth term is in between 0 and
2r − 1, and the fifth term vanishes. Keeping in mind that ξ̄0 = 0, the objective now evaluates
to a number between ∑k

i=1 qiξi + rQ and ∑k
i=1 qiξi + rQ + 2r− 1. In other words, the objective

is T − s +∑k
i=1 qiξi and p ≤ s ≤ t− 1. Since this is a NO instance of SUBSET SUM INTERVAL,
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∃I ⊆ {1, . . . , k} such that ∑i∈I qiξi = s. Set ξ̄i = 1 if i ∈ I, and ξ̄i = 0 if i ∈ {1, . . . , k} \ I.
This is feasible, and makes the objective value equal to T , which is a profitable deviation
from T − 1. Therefore

(
(x̄, ȳ), (ξ̄, χ̄)

)
is not a Nash equilibrium.

From Theorem 9, we have a direct implication of Corollary 2.

Corollary 2. Consider a linear Nash Game N = (P 1, . . . , P n) where each P i is an MIP . It
is Σp

2-hard to decide if N has a PNE.

Proof of Corollary 2. Bounded and continuous bilevel programs can be reformulated as
bounded integer programs of polynomial-size [13]. The Greek and the Latin leaders’ problems
defined in (6.2) are bounded bilevel programs, where each variable necessarily takes value in
[0, 1].

Furthermore – under an assumption of boundedness – we prove Corollary 1, showing that an
MNE always exists.

Proof of Corollary 1. Let Fi be the feasible region of the i-th player (leader), namely a
bounded set. Given x−i, the objective of its optimization problem is linear. Hence, an optimal
solution always exists, which is an extreme point of conv(Fi). However, given that Fi are
feasible sets of bilevel linear programs, we know that the feasible region of the leaders is a
finite union of polyhedra from Theorem 7. It follows that conv(Fi) is a polyhedron. Since we
also assume boundedness, conv(Fi) is indeed a polytope. Thus, the i-th player’s strategy is
the set of extreme points of this polytope, finite in number. Since the same reasoning holds
for each player, this is a Nash game with finitely many strategies. From Nash [116, 117], such
a game has an MNE .

From Corollary 1, deciding on the existence of an MNE is trivial if each player has a bounded
feasible set. We extend this result with Theorem 10, showing that even if one player’s feasible
region is unbounded, then deciding on the existence of an MNE is Σp

2-hard.

Before proving Theorem 10, we introduce the technical Theorem 12. While Theorem 7 shows
that any finite union of polyhedra can be written as a feasible region of a bilevel problem in a
lifted space, Theorem 12 explicitly describes this set for a given union of two polyhedra.

Lemma 12. Consider the set S defined as the union of two polyhedra, namely

S =
{
(h, y, x) ∈ R3

+ : h = x; y = 1
}
∪
{
(h, y, x) ∈ R3

+ : h = 0; y = 0
}

(6.4)

S has an extended formulation as a feasible set of a simple bilevel program.
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From Theorem 12 we can further derive Theorem 13.

Lemma 13. Suppose S ⊆ Rn1 and T ⊆ Rn2 have an extended formulation as bilevel programs.
So does S × T .

Therefore, with Theorems 12 and 13, we can then prove Theorem 10. Both the proofs for
these two lemmas can be found in appendix B.1.

Proof of Theorem 10. We reduce SUBSET SUM INTERVAL into a problem of deciding the exis-
tence of an MNE for a trivial NASP. Let Q = ∑k

i=1 qi. Also, as of Theorem 9, let the Latin
game and the Greek game have Latin and Greek terms, respectively.

Latin Game. The Latin game is a Stackelberg game. The variables of the leader and the
follower are denoted by Latin alphabets x and y, respectively.

max
x0,...,xk+3r+1

∈R
y0,...,yk

∈R

: x0

2 +
k∑

i=1
qixi + 2(Q + 1)ξr+1xk+3r+1

− (Q + 1)
(

r∑
i=1

2i−1xk+i + pxk+3r+1

)
(6.5a)

subject to xi ≥ 0 ∀ i = 0, . . . , k (6.5b)

yi ≥ 0 ∀ i = 0, . . . , k (6.5c)

xi ≥ 1 ∀ i = 0, . . . , k (6.5d)

xk+3r+1 = xk+2r+i ∀ i = 1, . . . , r (6.5e)

xk+3r+1 = p +
r∑

i=1
2i−1xk+r+i (6.5f)

x0

2 +
k∑

i=1
qixi ≤ xk+3r+1 (6.5g)

(xk+i, xk+r+i, xk+2r+i) ∈ S (as in (6.4)) ∀ i = 1, . . . , r (6.5h)

(y0, . . . , yk) ∈ arg min
y


k∑

i=0
yi :

yi ≥ −xi

yi ≥ xi − 1
∀ i = 0, . . . , k

 (6.5i)
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Greek Game. Similarly, the Greek game is a Stackelberg game, where the leader and the
follower variables are denoted by Greek alphabets ξ and χ, respectively.

max
ξ0,...,ξr+1

∈R
χ1,...,χr

∈R

: (1− x0)ξ0 (6.5j)

subject to ξi ≥ 0 ∀ i = 1, . . . , r (6.5k)

χi ≥ 0 ∀ i = 1, . . . , r (6.5l)

ξi ≤ 1 ∀ i = 1, . . . , r (6.5m)

p +
r∑

i=1
2i−1ξi = ξr+1 (6.5n)

(χ1, . . . , χr) ∈ arg min
χ


r∑

i=1
χi :

χi ≥ −ξi

χi ≥ ξi − 1
∀ i = 0, . . . , r

 (6.5o)

Claim 6. The game defined in (6.5) is a trivial NASP.

Claim 7. The region of space for x – defined by (6.5c) and (6.5i) – is the Cartesian product of
({xi : xi ≤ 0}∪{xi : xi ≥ 1}) for i = 0, . . . , k. Similarly the region of the space for ξ – defined
by (6.5l) and (6.5o) – is the Cartesian product of ({ξi : ξi ≤ 0} ∪ {ξi : ξi ≥ 0}) for i = 1, . . . , k.

The proof of this claim is analogous to the ones of Claims 2-1.

Claim 8. xk+3r+1 takes integer values only.

Proof of Claim. From (6.5h), each xk+r+i for i = 1, . . . , r can take a value of either 0 or
1, depending upon which of the two polyhedra (in the definition of S) the variable falls in.
Moreover, since in (6.5f) the RHS is a sum of integers, the LHS xk+3r+1 is also an integer.

Claim 9. (xk+3r+1)2 = ∑r
i=1 2i−1xk+i + pxk+3r+1 holds for the Latin game’s feasible set.

Proof of Claim. Consider the set S defined in (6.4). For a point h = x and y = 1 in the
first polyhedra, one can write h = xy. Similarly, for a point h = 0 and y = 0 in the second
polyhedron, then h = xy. Thus, the nonlinear equation h = xy is valid for the set S. By
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multiplying both sides of (6.5f) with xk+3r+1, one gets

(xk+3r+1)2 = pxk+2r+1 +
r∑

i=1
2i−1xk+r+ixk+3r+1

= pxk+3r+1 +
r∑

i=1
2i−1xk+r+ixk+2r+i

= pxk+3r+1 +
r∑

i=1
2i−1xk+i

The second equality follows from (6.5e), and the third equality from the fact that h = xy is
valid for S and (6.5h).

Claim 10. Given some ξr+1 ∈ Z between p and t − 1, the Latin player has a profitable
unilateral deviation for any feasible strategy with xk+3r+1 ̸= ξr+1.

Proof of Claim. Note that if ξr+1 is between p and t− 1, then xk+3r+1 = ξr+1 is feasible for
the Latin game. Observe the last two terms of the objective function. From Claim 9, we
can rewrite them as (Q + 1)(2ξr+1xk+3r+1 − x2

k+3r+1). By focusing just on the last two terms,
these reach a maximum value for the feasible choice of xk+3r+1 = ξr+1. We can now argue
that the player can never be optimal by choosing xk+3r+1 ≠ ξr+1. As established in Claim 8,
xk+3r+1 is restricted to take integer values, and for any other choice xk+3r+1, the deficit in
objective value is at least Q + 1. However, even if each of the other terms take their maximum
possible value, the largest value they can add to is 0.5 + Q < Q + 1. the claim follows.

Claim 11. If SUBSET SUM INTERVAL has decision YES, then (6.2) has a PNE (and hence an
MNE).

Proof of Claim. Let s be an integer such that p ≤ s < t and ∀I ⊆ {1, . . . , k}, ∑i∈I qi ̸= s,
and let b1, . . . , br ∈ {0, 1} be the unique r-bit binary representation of s − p. Consider the
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following pure strategies for the players:

xk+3r+1 = s (6.6a)

xk+2r+i = s i = 1, . . . , r (6.6b)

xk+r+i = bi i = 1, . . . , r (6.6c)

xk+i = bis i = 1, . . . , r (6.6d)

x0 = 1 (6.6e)

ξ0 = 0 (6.6f)

ξi = bi i = 1, . . . , r (6.6g)

ξr+1 = s (6.6h)

Finally, choose xi ∈ {0, 1} for i = 1, . . . , k such that ∑k
i=1 qixi is the largest value not

exceeding s. Since it is a YES instance of SUBSET SUM INTERVAL, ∑k
i=1 qixi ≤ s− 1, and thus

the strategy is indeed feasible for both the players. The Latin player has no feasible profitable
deviation. This follows from the fact that xk+3r+1 cannot be chosen differently due to Claim
10. Moreover, the first two terms in the above strategy already take the largest possible value
not violating (6.5g). Thus the Latin player has no profitable deviation. Now for the Greek
player, since x0 = 1, the objective value is always zero, and cannot be improved. Thus, the
strategy in (6.6) is indeed a PNE .

Claim 12. If SUBSET SUM INTERVAL has decision NO, then (6.2) has no MNE.

Proof of Claim. Recall xk+3r+1 is forced to be an integer between p and t− 1. For any choice
of xk+3r+1, x0 = 0 is selected and x1, . . . , xk are so that (6.5g) holds with equality. There is
no incentive to choose x0 = 1, which will contribute to only 0.5 in the objective. However,
with x0 = 0, the Greek player can choose arbitrarily large values of ξ0. Hence, there is always
a larger choice of ξ0 which constitute a profitable deviation. Thus, no equilibrium exists for
the game.

6.4 An Enumeration Algorithm to find MNEs for NASPs

First, we introduce Algorithm 5, which enumerates the polyhedra whose union corresponds
to each player’s feasible region. Then, it finds a pure-strategy Nash equilibrium in the convex
hull of each player’s feasible regions. We will prove the equivalence between finding a PNE
over the convex hull and the original problem. Also, we remark that we call player the
Stackelberg game associated with a given leader and their followers.
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Algorithm 5: Enumeration algorithm to obtain an MNE for a NASP
Data: A description of NASP N = (P 1, . . . , P n)
Result: For each i = 1, . . . , n, x̂i

j is a pure-strategy played with probability pi
j,

presenting a mixed-strategy with support size ki

1 for i = 1, ..., n do
2 Enumerate the polyhedra whose union defines the feasible set Fi of P i;
3 F̃i ← cl conv Fi by applying Theorem 8;
4 P̃ i ← objective function of P i and a feasible set of F̃i;
5 Solve the facile Nash game Ñ = (P̃ 1, ..., P̃ n) to obtain either a PNE , (x̃1, . . . , x̃n) or

show that no PNE exists;
6 if no PNE exists for Ñ then
7 return no MNE
8 for i = 1, ..., n do
9 if x̃i ∈ Fi then

10 x̂i
1 ← x̃i; pi

1 ← 1; ki ← 1;
11 else
12 x̃i = ∑ki

j=1 ηjx̂
i
j for x̂i

1, . . . , x̂i
ki ∈ Fi with ηj ≥ 0 and ∑ki

j=1 ηj = 1;
13 pi

j ← ηj for j = 1, . . . , ki;

14 return (x̂i
j, pi

j) for each i = 1, . . . , n and j = 1, ..., ki

The feasible region. Consider the feasible region of a simple Stackelberg game, given
by {A′u + B′v ≤ b, v ∈ SOL(P (u))}. Using the KKT conditions of the lower-level players
in P (u), we can rewrite the Stackelberg game feasible region as in (6.7), which is a union of
polyhedra:

S =

x :
Ax ≤ b

z = Mx + q

0 ≤ xi ⊥ zi ≥ 0, ∀ i ∈ C

 . (6.7)

Preliminary Enumeration Algorithm. Algorithm 5 exploits the polyhedral structure
of each player’s feasible region. Step 2 explicitly enumerates all such polyhedra, while Step 3
computes the closure of their convex hull using Theorem 8. Since this convex hull is also a
polyhedron, the game Ñ (defined in Step 5) is a facile Nash game, and we can get a PNE for
the game using Theorem 6.

Let x̃ be a PNE of Ñ and x̃i be the strategy of the i-th player. If x̃i belongs to Fi, then at
equilibrium i plays x̃i in N . If x̃i does not belong to Fi, it is still contained in cl conv Fi.
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Thereby, x̃i can be expressed as a convex combination of points – or strategies – in Fi or
a limit of such points. Player i would then play a mixed-strategy where each weight in the
convex combination – or δ of Theorem 8 – is the probability of playing the corresponding
pure-strategy, as in Step 12 of Algorithm 5. We remark that the LCP solved in Step 5 is
implemented as a feasibility problem and solved as a MIP . Being interested in a specific
equilibrium, one can add an objective function to this LCP problem, thus allowing the user to
perform equilibria selection (if more than one exists). A visualization of the rationale behind
the algorithm is in Figure 6.2. We formalize the correctness and finite termination of the
above procedure in Theorem 14.

Theorem 14. Algorithm 5 terminates finitely and (i) if it returns x̂i
j, pi

j for each i = 1, . . . , n,
and j = 1, . . . , ki, then the strategy profile is indeed an MNE for the NASP, (ii) if it returns
failure, then N has no MNE.

Proof of Theorem 14. For the purpose of this proof, we adopt the same notation introduced
in Algorithm 5. First, the algorithm terminates in a finite number of steps: all loops in
Algorithm 5 are finite loops, Step 2 ends finitely since there are only finitely many polyhedra
(see Theorem 7), and Step 3 is also a finite procedure.

Proof of Statement (i) . Observe that if Algorithm 5 does not return failure, then Step 5
finds PNE x̃ for Ñ . Each player’s objective function is linear, and the distribution for the
MNE has finite support. Therefore, one can observe that - for each player i - the following
holds:

E
((

ci + Cix̂−i
)T

x̂i
)

=
∑
j′

ki∑
j=1

p−i
j′ pi

j

(
ci + Cix̂−i

j′

)T
x̂i

j =
(
ci + Cix̃−i

)T
x̃i. (6.8)

Assume a generic player i has an unilateral profitable deviation †x̂i
j, and †pi

j for i = 1, . . . , ℓi

from x̂i in their P̃ i problem. Such a deviation is also a mixed-strategy profile. Consider
now the pure-strategy for Ñ given by ∑ℓi

j=1(†pi
j † x̂i

j). It is feasible for the facile game P̃ i.
Therefore, leveraging on the linearity of each player’s objective function, we can show that
this is also a profitable deviation for P̃ i in Ñ , and hence find a contradiction.
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(a) The players’ feasible regions. From
Theorem 7, these are finite unions of

polyhedra. Step 2 of Algorithm 5

(b) With Theorem 8, we compute the convex
hull of each player’s feasible region. Step 3 of

Algorithm 5

(c) Given the convex hulls, the problem
reduces to a MIP (LCP) as of Theorem 6.

Step 5 of Algorithm 5

!

!

(d) The solution ⋆ can be interpreted as a
convex combination of feasible strategies.

Steps 10 and 12 of Algorithm 5

Figure 6.2 A pictorial reprsentation of Algorithm 5.

(
ci + Cix̃−i

)T
x̃i =

∑
j′

ki∑
j=1

p−i
j′ pi

j

(
ci + Cix̂−i

j′

)T (
x̂i

j

)
(6.9)

≥
∑
j′

ℓi∑
j=1

p−i
j′ † pi

j

(
ci + Cix̃−i

j′

)T (
†x̂i

j

)
(6.10)

=
ci + Ci

∑
j′

p−i
j′ x̃−i

j′

T  ℓi∑
j=1
†pi

j † x̂i
j

 (6.11)

=
(
ci + Cix̃−i

)T

 ℓi∑
j=1
†pi

j † x̂i
j

 (6.12)

The result of (6.12) follows by plugging the profitable deviation into (6.8), and exploiting
its linearity. Since we have a profitable deviation for the mixed strategy for N , a unilateral
deviation from x̃ exists for N . This contradicts the fact that x̃ is a PNE for N . Therefore,
such a deviation cannot exist.

Proof of Statement (ii) . To prove this statement, we prove its contrapositive. Namely,
we show that if N has an MNE , then Step 5 obtains a PNE for Ñ and will not return failure.
Therefore, it is sufficient to show that Ñ has a PNE . Let the MNE of N be given by each player
i ∈ [n] playing xi

1, . . . , xi
ki

with probability pi
1, . . . , pi

ki
, respectively. Let x̃i = ∑ki

j=1 pi
jx

i
j be the
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a feasible pure-strategy for player i. It follows that (x̃1, . . . , x̃n) is a feasible pure-strategy for
Ñ , and we now show it is indeed a PNE for Ñ . Given the above MNE for N , we know that

∑
j′

ki∑
j=1

p−i
j′ pi

j(Cix−i
j′ + ci)T xi

j ≤
∑
j′

p−i
j′ (Cix−i

j′ + ci)T x̄i,∀ x̄i ∈ Fi.

Due to the linearity of the objective function, it follows that:

(
Cix̃−i + ci

)T
x̃i ≤

(
Cix̃−i + ci

)T
x̄i ∀ x̄i ∈ Fi. (6.13)

If (6.13) holds for all x̄i ∈ cl conv(Fi), for all i, then x̃ is a PNE of Ñ and the proof will be
complete. First, we show that (6.13) holds for x̄i ∈ conv(Fi). Let x̄i = ∑ℓ

j=1 λjx̄
i
j, where

x̄i
j ∈ Fi and λj ≥ 0 and ∑ℓ

j=1 λj = 1. Now consider the ℓ inequalities of (6.13), each one for
x̄i

j for j = 1, . . . , l. Multiply these inequalities by non-negative λj on both sides, and add to
obtain

(
Cix̃−i + ci

)T
x̃i ≤

ℓ∑
j=1

λj

(
Cix̃−i + ci

)T
x̄i

j

=
(
Cix̃−i + ci

)T
x̄i.

In the second instance, to show the same holds for x̄i ∈ cl conv(Fi), consider a convergent
sequence x̄i

1, x̄i
2, . . . with each x̄i

j ∈ conv(Fi) and limj→∞ x̄i
j = x̄i:

(
Cix̃−i + ci

)T
x̃i ≤

(
Cix̃−i + ci

)T
x̄i

j ∀ j = 1, 2, . . .

=⇒ lim
j→∞

(
Cix̃−i + ci

)T
x̃i ≤ lim

j→∞

(
Cix̃−i + ci

)T
x̄i

j

=⇒
(
Cix̃−i + ci

)T
x̃i ≤

(
Cix̃−i + ci

)T
(

lim
j→∞

x̄i
j

)
=

(
Cix̃−i + ci

)T
x̄i.

Thus, (6.13) holds for all x̄i ∈ cl conv(Fi), and x̃ is indeed a PNE of Ñ .

Remark 3. Within the proof of Theorem 14, we never exploit any specific properties of simple
Stackelberg games. The only assumption we leverage is that the problem is a linear Nash game
(i.e., the objective of each player is of the form (ci + Cix−i)T x). In this case, it is sufficient to
solve the problem for PNE in the convex hull of each player’s feasible set to compute an MNE
for the original problem. In this spirit, if one can compute the convex hull of the player’s
feasible region, and if objectives are linear, then every game is a convex game.
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6.5 Enhancing the Algorithm

In this section, we present two enhancements of Algorithm 5. In Section 6.5.1 we introduce an
iterative procedure to approximate the closure of the convex hull of each player feasible set.
Thus, we avoid a possibly costly (and arguably unnecessary) enumeration of all the polyhedra
defining the feasible sets. In Section 6.5.2, we tailor the algorithms to specifically retrieve
PNEs, as opposed to general MNEs.

6.5.1 Inner Approximation Algorithm

While Algorithm 5 is guaranteed to terminate and solve the problem, we introduce a procedure
that can improve computational tractability. The feasible region of a simple Stackelberg
game is a finite union of polyhedra (see Theorem 7), and Theorem 8 gives their convex hull.
However, since there may be exponentially many polyhedra, the convex hull description could
become untractably large. Algorithm 5 intensively leverage on the complete enumeration of
such polyhedra in Step 2. The central intuition is to limit the enumeration by iteratively
refining the convex hull’s description for each player. This procedure is also valid for an
individual Stackelberg game or a bilevel program. However, its importance is more relevant
when dealing with NASPs, where the computation of this convex hull is essential. The key
components of this approach are the polyhedral relaxation of the set S defined in (6.7), and
the concept of selected polyhedron.

Definition 20 (Polyhedral relaxation). The polyhedral relaxation of the set S defined in (6.7)
is given by the set O0 = {x : Ax ≤ b, z = Mx + q, xi ≥ 0, zi ≥ 0 ∀ i ∈ C}

Clearly, this set contains cl conv(S) and is a polyhedron by construction, even though if S is
not generally a polyhedron.

Definition 21 (Selected polyhedron). Let b ∈ {0, 1}|C| and let C = {c1, . . . , ck}. Then, the
selected polyhedron corresponding to b is P(b) = {xci

≤ 0, ∀ i ∈ {i : bi = 0}}⋂{[Mx + q]ci
≤

0, ∀ i ∈ {i : bi = 1}}.

We can then formally define the concept of inner approximation.

Definition 22 (Inner Approximation). Let J = {j1, . . . , jℓ} ⊆ {0, 1}mf . Then the inner
approximation defined by J is IJ = cl conv (⋃b∈J P(b) ∩ O0).

Remark 4. The size of the extended formulation of IJ is bounded by O(|J |). To ensure a
perfect description, we need a choice of J = {0, 1}|C|. However, |J | = 2|C| and a description
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of cl conv(S) will be exponentially large. Unless P = NP, there cannot be any asymptotical
improvements [10].

Algorithm 6 presents the inner approximation algorithm – an enhancement to Algorithm 5–
to retrieve an MNE for NASPs. First, it iteratively constructs an increasingly accurate
inner approximation of the players’ feasible regions. Then, the algorithm looks for a PNE
in a restricted game Ñ , namely a game where each player’s feasible region may be inner
approximated (Step 4).

Let F1, . . . , Fn, be the inner approximations of the feasible sets of player 1, . . . , n. One can
compute the convex hull’s closure for each approximation and solve the associated facile
Nash game Ñ . If x̄ is a Nash equilibrium of Ñ , the algorithm checks if x̄ – or the associated
mixed-strategy implied by x̄ (similarly to Step 12 of Algorithm 5) – is a Nash equilibrium
for the original game N . If this is the case, then the algorithm terminates and returns the
equilibrium. Conversely, if this mixed-strategy is not an MNE of N , there exists a profitable
deviation x̂i for some players such that x̂i ̸∈ Fi. In this case, we refine the inner approximation
of i-th player’s feasible set by adding a polyhedron containing x̂i. At each iteration of the
algorithm, we keep on adding polyhedra containing the profitable deviations. However, Ñ may
not have a PNE in a given iteration (Step 4). In this case, we gain no additional knowledge
about which polyhedra to add to the inner approximation. Therefore, we arbitrarily add one
or more polyhedra to the feasible region of each player in the problem, keeping the algorithm
running. We define as the extension strategy the criteria by which we select such polyhedra.

In optimization problems, a point contained in an inner approximation of the feasible set
is feasible for the original problem and provides a primal bound for the original problem.
However, this is not true in the case of a Nash game. In Remark 5 below, we show that the
inner approximation game might have an MNE while the original game does not. Conversely,
we also show that the original game might have an MNE while an inner approximation of the
game does not.

Remark 5 (Inner approximation Ñ might have an MNE but N might not). There might be
cases where the inner approximation has no MNE, but the original NASP does. Consider the
following players’ problems and their inner approximation.

Latin Player: min
x
{ξx : x ∈ R, x ≥ 0} (6.14a)

Greek Player: min
ξ,χ
{xξ : ξ ∈ [−5, 5]; χ ≥ 0;

χ ∈ arg min
χ
{χ : χ ≥ ξ − 1; χ ≥ −ξ − 1}} (6.14b)
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Algorithm 6: Inner approximation to obtain an MNE for a NASP
Data: A description of NASP N = (P 1, . . . , P n) and J = (J1, ..., Jn) where

J i ⊆ {0, 1}|Ci| where Ci is the set of indices of complementarity (⊥) conditions
for the i-th player

Result: For each i = 1, . . . , n, x̂i
j is a pure-strategy played with probability pi

j,
presenting a mixed-strategy with support size ki

1 Procedure InnerApproxNash(N, J)()
2 F̂i ←inner approximation defined by J i and F̃i ← cl conv F̂i;
3 P̃ i ← objective function of P i and a feasible set F̃i;
4 Solve the facile Nash game Ñ = (P̃ 1, ..., P̃ n) to obtain solution x̄;

/* May return no x̄ */
5 x̂1, ..., x̂n ← getDeviation(P, x̄);
6 if x̂i = NULL for all i = 1, ..., n then
7 return x̄

8 for i = 1, ..., n do
9 if x̂i ̸= NULL then

10 b̃i ←binary encoding of a polyhedron containing x̂i. J i ← J i ∪ b̃i;

11 return InnerApproxNash(N, J)

Using KKT conditions on the follower’s problem, the Greek’s problem can be rewritten as

min
ξ,χ,µ

xξ : ξ ∈ [−5, 5]; µ1 + µ2 = 1; χ ≥ 0;
0 ≤ µ1 ⊥ χ− ξ + 1 ≥ 0
0 ≤ µ2 ⊥ χ + ξ + 1 ≥ 0

 .

The polyhedra P (b) corresponding to b = (0, 0), and b = (1, 1) are empty. The remaining two
polyhedra can be projected to the ξ space as [−5,−1] ∪ [1, 5]. We claim that the problem in
(6.14) has no Nash equilibrium. This is because, irrespective of the Latin player’s decision,
an optimal decision for the Greek player is ξ = −5. For such a value of ξ, the Latin player
has an unbounded objective. Consider the inner approximation due to the choice J = {(0, 1)}.
The equivalent programs are as follows.

Latin Player: min {ξx : x ∈ R, x ≥ 0} (6.15a)

Greek Player: min {xξ : ξ ∈ R, ξ ∈ [1, 5]} (6.15b)

In (6.15), the inner approximation is exact for the Latin player and is a strict inner
approximation for the Greek player. However, (6.15) has a PNE (ξ, x) = (0, 1).

Conversely, it can also happen that the original NASP has no MNE, but the inner approxi-
mation does. For such an example, replace the objective of the Greek player in (6.14) with
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a minimization of −xξ, and the corresponding inner approximation of the Greek player in
(6.15) with ξ ∈ [−5,−1]. This inner approximation game has no Nash equilibrium. However,
the original game has a Nash equilibrium of (ξ, x) = (0, 5).

6.5.2 Enhancements for PNEs

In specific applications, users tend to prefer deterministic strategies over randomized ones.
Thus, one necessarily requires a PNE or to show that no PNE exists. With this motivation,
we alter Algorithm 5 to retrieve PNEs specifically or prove no PNE exists.

Enumeration for PNE. This algorithm is similar to Algorithm 5, hence we assume the
same notation. First, the procedure explicitly enumerates all the polyhedra in the feasible
region of each player, and computes their convex hull. In addition, it introduces in Ñ a set of
binary variables forcing the equilibrium strategy, for each player, to be strictly in the original
feasible region rather than solely in the convex hull. From Theorem 7, the feasible region
for each NASP’s player is a finite union of polyhedra. Let the feasible region of the i-th
leader be Fi = ⋃gi

j=1 P i
j , where P i

j = {Ai
jx ≤ bi

j} is a polyhedron. Moreover, Theorem 8 gives
cl conv(Fi) as Ai

jx
i
j ≤ bi

jδ
i
j for j ∈ [gi], xi = ∑gi

j=1 xi
j, and ∑gi

j=1 δi
j = 1. If for some j, δi

j = 1,
then the projection x is strictly in the polyhedron P i

j . Since we can reformulate a NASP as
a MIP feasibility problem, we enforce a new set of constraints in Ñ requiring each δi

j to be
binary in Ñ . Hence, each PNE for Ñ is also a PNE for N , and if Ñ has no PNE , also N

has no PNE . In addition, for the equivalence between PNEs in Ñ and N , the condition of
N being a NASP can be relaxed. In particular, it is sufficient that leaders’ objectives in N

are convex – observe that under this case, the reasoning in the proof of statement (ii) for
Theorem 14 directly follows. We refer the reader to appendix B.3 for the pseudocode of this
procedure.

6.6 Computational Tests

We test our algorithms2 with the energy-trade model (B.3) and (B.4).

The Model. We consider different geographical regions, where governments of such regions
act as leaders. Governments determine the energy export/import amount (of energy) and
the CO2 taxation scheme imposed on their respective followers (energy producers). Each
country seeks to minimize the sum of three components: (i) the product between each

2Full implementation with detailed documentation are available on https://github.com/ds4dm/ZERO

https://github.com/ds4dm/ZERO
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follower’ production and the emission cost (e.g., the social cost of carbon, SCC), (ii) the
product between import price and quantity to any other country, (iii) the negative product
between import price and quantity of any other country, namely the maximization of export
revenues. Besides, countries may also include a negative (maximized) tax-revenue term in their
objectives, namely the sum of all their respective followers’ taxes. We distinguish between
three forms of taxation: (i) Standard-Taxation, where each follower has a possibly different
tax per unit-energy produced, (ii) Single-Taxation, where every follower has the same tax
per unit-energy produced, (iii) Carbon-Taxation, where every follower has the same tax per
unit-emission. The lower-level players are energy producers deciding the amount of production
of their plants based on their linear and quadratic unit costs and their leader’s taxation levels.
Specifically, followers are playing a Cournot game where the homogeneous good is the amount
of energy produced.

Instances. We propose three sets of computational instances (InstanceSet A, B, and
Insights), and a case study on a real-world inspired Chile-Argentina instance 3. The goal of
our computational tests is twofold. On the one hand, we showcase our algorithms’ compelling
computational capabilities and compare their performances. With this respect, we extensively
test all our algorithms on the instance sets A and B. On the other hand, we derive managerial
insights from our models’ solutions, focusing on the Chile-Argentina case study and the
instance set Insights.

Data generation. We synthetically generate our instance sets as follow: (i) InstanceSet A
contains 150 instances with 3 to 5 countries and up to 3 followers per country, (ii) InstanceSet
B contains 50 instances with 7 countries and up to 3 followers per country, (iii) InstanceSet
Insights contains 50 instances with 2 countries and 3 followers per country.

We randomly draw each of the followers from three classes of producers: highly-polluting
(e.g., coal, oil), averagely-polluting (e.g., gas), and green (e.g., renewables such as solar,
hydro). Their emission costs per unit-energy (e.g., GWh) takes an integer value in the range
[300, 500], [100, 200], and [25, 50], respectively. These are USD values of emission assuming
a social cost of carbon at USD 25 per tonne of CO2 equivalent and typical emission values
in these technologies. We set linear and quadratic production costs – negatively correlated
to the emission factors – in the respective ranges [150, 300], and [0, 0.6] for unit energy. The
production capacities are discrete unit-energies in the interval [50, 20000]. We refer the reader
to appendix B.4 for a more detailed review of the parameters.

3All instances are available on https://github.com/ds4dm/EPECInstances

https://github.com/ds4dm/EPECInstances
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6.6.1 Strategic Insights

Starting from InstanceSet Insights, we solve each instance 4 times by testing a discrete grid
of 2 parameters. The first one is the Carbon-Taxation revenue in every country’s objective,
while the second dictates whether trade among countries is allowed. Table B.4 provides
comprehensive results. We attempt to answer the following strategic questions:

(i) Tax policy. Are countries reducing further their emissions if they consider the carbon
tax as a source of income?

(ii) Trade policy. How does competitive energy trade among countries affect global
emission?

Tax policy. Some literature argues that carbon tax revenues can further help reduce
carbon emission, spur greener technologies (e.g., carbon sequestration, electric vehicles), or
even meet other governmental expenses [2, 105, 119]. One might instinctively think that an
income-hungry (e.g., GDP) government could levy a more aggressive carbon tax policy if that
could be a revenue source and help reduce emissions. However, we observe the opposite to
be true. We consistently find that when the government’s objective (b = 1 in (B.3)) model
incomes through a carbon tax, the government is systematically incentivized to impose a
smaller tax. With smaller tax rates, coal and natural gas production are more significant.
Thus, this increases the governmental revenue, which is the product of production and tax
per unit of emission. In summary, decreased carbon tax could give increased revenue for
the government. However, emissions are decreased compared to the no-taxation scheme but
increased compared to the case when the government does not look for revenue from these
taxes.

In particular, in 40 out of the 50 test instances, both countries’ total emission was greater
if the individual governments considered the objective’s tax revenue. On an absolute basis,
emissions were about 13.5% more on average when governments imposed taxes, keeping the
revenue in their objective. A statistical t-test rejects the null hypothesis that the global
emissions are equal with and without the countries considering carbon tax as a revenue source
with a p-value of 0.00018.

We also observe that the trade is lesser in 30 out of 50 instances and, on average, about 7.8%
lesser when the countries consider tax as a revenue source. However, a similar t-test does
not suggest enough evidence to reject the null hypothesis (p-value = 0.29) that the traded
quantities in the two cases have the same population mean.
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Trade policy. Second, we observe that the tax rate is typically lesser when countries can
trade. Quantitatively, we find that the average tax rate without trade is about 12.9% higher
than when trade exists between the countries. However, we also observe that in 63 of the 100
possible cases (50 instances in InstanceSet Insights with two countries each), the tax rate is
higher if there is trade between them. In other words, tax is slightly higher in many instances
when the trade is enabled. Nevertheless, in those instances where the tax rate is lower with
trade enabled, the tax rate is significantly lower.

Next, one might wonder if increased emissions might accompany trade between countries.
Since energy trade is an economic activity, one can think it could worsen the externality
of emission. However, we observe that emissions are consistently less when countries can
trade. Clean means of energy in a different country could fulfill the demand without forcing
domestic producers to produce using non-green means of production. Quantitatively, we
compare the average emission by both the countries when a trade happens between them
instead of no-trade being allowed between them (see Table B.4). We observe that the average
emission dropped by about 35.9% when trade was enabled. Further, never in those 50 test
instances did the emission ever increase after countries were able to trade. We also note that
when countries can trade, emissions could increase in one country, but the decrease in another
country is always significant enough to ensure that the total emission decreases while keeping
the consumption in both countries roughly the same.

Final comments. Besides our consistent insights that (i) a tax revenue-hungry govern-
ment might impose a lesser carbon tax than a government inclined to reduce emissions (ii)
enabling trade reduces total global emissions, the answers to the more general questions
were predominantly instance dependent. In particular, we observed that opening up trade
increased domestic carbon taxes in some cases and decreased them in others. We observed
similar behaviors for trade with revenue-hungry governments. The answers to these questions
were sensitive to the cost, capacity, and emission factors of production units and the domestic
energy demand of each country. These observations suggest that one has to solve a NASP (or
even a more complex model) to identify the specific dynamics for a given situation. Further-
more, in NASPs, one can always perform equilibria selection – if multiple MNEs exist – by
solving the problem with Algorithm 5 and enforcing the MIP ’s objective to optimize a given
criterion.
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6.6.2 Case Study – Chile-Argentina Energy Markets

We implemented the model using actual data from Chile’s and Argentina’s electricity markets
(specifically from 2018-2019). Electricity trade between these countries started in 2016, with
Chile exporting a small amount – close to 1558 MWh – of electricity to Argentina. However,
we expect the transfers to increase as both countries signed an energy cooperation agreement
in 2019 (for both electricity and gas). These efforts have created some debate regarding
electricity prices, which may impact one of the Chilean government’s main goals: make
electricity more affordable. Furthermore, both Chile and Argentina have signed the Paris
agreement and promised rapid decarbonization of their energy systems. Chile was the first
country in Latin America to implement a carbon tax (USD 5/tCO2), followed by Argentina,
which defined a carbon tax that became operational in 2019. Given this context, this analysis
focuses on determining the impacts of an integrated market where electricity trade is viable
while each country’s government can define internal carbon tax policies. We model different
energy producers in each country. Electricity producers in Chile and Argentina have various
technologies. We consider hydro, solar, wind, natural gas, and coal technologies in Chile’s
case. Historical data shows that Argentina heavily relies on thermal plants fueled by natural
gas and on hydro energy. Technical data for different technologies, obtained from the Chilean
Comision Nacional de Energia (National Energy Agency) and the US Energy Information
Administration, include fuel consumption, capacity factors, and variable costs. We model a
stake of coal-based production technology only in Chile and minimal to none in Argentina.
We analyzed how the markets react under different renewable sources’ future levels and
with/without limits on energy trade imposed between these two countries.

If no trade is allowed (representing current operations), we calibrated the model to match
both countries’ historical data. There is a significantly greater demand in Argentina (129
TWh/y) than in Chile (60 TWh/y). Approximately 71% of the generation in Argentina roots
in natural gas thermal power plants. Hydro energy fulfills the remaining demand. In Chile’s
case, coal and gas power plants have a market share of 42%, hydro accounts for 36%, and
renewable sources (solar and wind) supply approximately 15% of the electric demand.

We observe an interesting substitution effect when trade is allowed among countries and install
capacities are not varied (existing capacities in both countries). Imports from Argentina
replace conventional means of production in Chile (coal and gas). The Chilean government
curtails fossil-fueled electricity by increasing the carbon tax faced by such technologies. The
opposite effect shows in Argentina, where the government lowers the carbon tax to incentivize
electricity generation from natural gas technologies. Such an export hurts the local market. As
expected, an increase in exports to Chile yields increased local electricity prices in Argentina,
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significantly lowering the indigenous consumption levels.

As observed above, with a possibility for energy trade between the countries, our model
predicts that without a significant increase in the renewable capacity on either country or
without a significant decrease in carbon’s social cost, Argentina’s economy could be highly
impacted. Therefore, unless cheap (near-zero) renewable sources produce energy in Chile or
Argentina, it is expected that trade among countries will remain low.

To assess the likelihood of future trade under large renewable energy deployments, we consider
two increased wind and solar capacity cases in Chile. The two scenarios consider capacity
additions of 20 GW and 40 GW, respectively [3]. We initially observe that Chile benefits from
increased renewable capacity if energy trade is not allowed in these cases. Electricity prices
are reduced by 13% when there is an increase of 40 GW, while consumption grows by 20%.
Interestingly, Argentina becomes a net importer of electricity when energy trade is allowed as
Chile increases its renewable energy capacity. Argentina has net imports of 12 TWh/y when
the country installs a 40 GW of renewable capacity. Therefore, Argentina switches from a net
exporter (without renewable capacity installed) to a net importer of electricity. This import
is a direct result of the availability of cheap energy, which increases the demand.

6.6.3 Speed Analysis

In terms of performance analysis, we focus on InstanceSet A, and B. An instance is marked a
solved if it has an MNE , or an algorithm finds a certificate of inexistence, namely, no MNE
exists. The time limit is TL = 1800 seconds. In our implementation, we introduce 3 extension
strategies for Algorithm 6: given a lexicographic order for each player’s polyhedra, k of them
are added sequentially, reverse-sequentially, or randomly.

Tables 6.1 and 6.2 summarize the computational results for InstanceSetA and InstanceSetB,
respectively. The upper parts of the tables reports results for the full enumeration Algorithm 5
(FE) and Algorithm 6 (InnerApp), where an MNE solves the instances. In the lower part of
the table, we specifically look for PNEs with the enhanced algorithm presented in Section 6.5.2
(FE-P). In the third column, if the algorithm is the inner approximation, we highlight the
extension strategies, and the relative parameter k in the following column. Fifth, sixth, and
seventh columns are, respectively, average time when: (i) an MNE is found (EQ), (ii) the
algorithm returns a certificate of non-existence (NO) and (iii) for all instances. In the eighth
and ninth column, we report the number of times the row’s algorithm outperforms all the
others, namely wins in terms of computing times. Finally, the tenth column reports how
many instances do not trigger the time limit.
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Table 6.1 Results summary of different algorithmic configurations for InstanceSetA.

Time (s) Wins
Algorithm ES k EQ NO All EQ NO Solved

FE - - 29.08 0.12 120.21 6 82 140/149

Seq 1 6.65 0.35 51.33 3 0 145/149
Seq 3 17.76 0.18 55.82 5 0 145/149
Seq 5 6.40 0.15 51.08 3 0 145/149

Rev.Seq 1 7.97 0.36 3.73 26 0 149/149
Rev.Seq 3 11.29 0.18 53.12 4 0 145/149
Rev.Seq 5 9.53 0.15 76.41 5 0 143/149
Random 1 5.22 0.36 26.60 8 0 147/149
Random 3 32.42 0.18 85.65 5 0 143/149

MNE InnerApp

Random 5 23.67 0.15 58.26 2 0 145/149

PNE FE-P - - 7.25 0.12 328.23 – – 122/149

Table 6.2 Results summary of different algorithmic configurations for InstanceSetB.

Time (s) Wins
Algorithm ES k EQ NO All EQ NO Solved

FE - - 260.29 1.12 1174.32 0 2 20/50

Seq 1 39.26 9.64 672.24 1 0 32/50
Seq 3 62.66 3.88 616.25 1 0 34/50
Seq 5 24.03 2.83 733.97 1 0 30/50

Rev.Seq 1 171.47 9.66 262.74 27 0 47/50
Rev.Seq 3 13.85 3.86 585.27 4 0 34/50
Rev.Seq 5 78.57 2.83 798.90 6 0 29/50
Random 1 34.65 9.65 497.06 0 0 37/50
Random 3 123.02 3.87 588.03 2 0 36/50

MNE InnerApp

Random 5 39.18 2.86 711.77 4 0 41/50

PNE FE-P - - 7.36 1.12 1441.95 – – 10/50

For MNEs, InnerApp achieves better performances than FE, being on average 2x faster on
all instances, and up to 30x when an MNE exists (see InnerApp-RevSeq-1 in Table 6.1).
Table 6.2 shows the full potential of InnerApp, which remarkably reduces computational times
compared to FE. Especially, InnerApp can solve almost all the 50 hard instances compared to
the 20 solved by FE. Besides, when no equilibrium exists, InnerApp will always terminate at
its last iteration, namely the one corresponding to FE. It is not surprising that FE returns a
non-existence certificate always faster than InnerApp. Both the algorithms InnerApp and FE
– when asked to retrieve a generic MNE – may return a PNE . This happens 37.6%, and 30.4%
within InstanceSetA and InstanceSetB, respectively. Hence, there is a natural need for FE-P.
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6.7 Concluding Remarks

Our theoretical and computational framework tackles NASPs, where players of a Nash game
solve linear bilevel programs, and each leader can have several followers playing a simple
Nash game among themselves. We show that deciding on the existence of PNE and MNE for
NASPs is Σp

2-hard, and we provide a family of algorithms to find MNEs as well as PNEs for
the problem. Furthermore, we show it is sufficient to compute an MNE over the convex hull
of each player’s feasible region to retrieve a MNE for the original problem. This work expands
our knowledge of algorithmic approaches to compute equilibria, in particular MNEs, by using
theory and tools from Integer Programming and Optimization. In addition to a theoretical
characterization of these algorithmic methods, we analyze their practical efficiency, settle their
limitations, and opens up new future directions by establishing a solid benchmark for future
progress. From an application standpoint, we demonstrated how the NASPs framework could
help unveil counterintuitive consequences of policymaking within the context of international
energy trade.

In terms of future work, both the computation of multiple equilibria or their selection
according to some specified criteria are interesting interrogatives. Furthermore, it may be
worth developing procedures to prune parts of the feasible regions (e.g., polyhedra) not in
the support of any equilibrium. This last direction may considerably speed up the equilibria
computation in NASPs and Stackelberg games. Finally, advancements on these proposed
research lines may lead to further methodological developments to tackle other classes of
hierarchical games. For instance, multi-leader multi-followers games where followers from
different leaders can directly interact.
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CHAPTER 7 ARTICLE 2: ZERO: PLAYING MATHEMATICAL
PROGRAMMING GAMES

Authors: Gabriele Dragotto, Sriram Sankaranarayanan, Margarida Carvalho and Andrea
Lodi.
Submitted to INFORMS Journal on Computing1.

Abstract We present ZERO, a modular and extensible C++ library interfacing Mathematical
Programming and Game Theory. ZERO provides a comprehensive toolkit of modeling
interfaces and algorithms for Reciprocally Bilinear Games (RBGs), i.e., simultaneous non-
cooperative games where each player solves a mathematical program with a linear objective in
the player’s variable and bilinear in its opponents’ variables. This class of games generalizes
the classical problems of Operations Research to a multi-agent setting. ZERO modular
structure gives users all the elementary ingredients to design new game-theoretic models and
algorithms for RBGs, and find their Nash equilibria. The library provides additional extended
support for integer non-convexities, linear bilevel problems, and linear equilibrium problems
with equilibrium constraints. We provide an overview of the software’s key components and
showcase a Knapsack Game, i.e., a game where each player solves a binary knapsack problem.
Aiming to boost practical methodological contributions at the interplay of Mathematical
Programming and Game Theory, we release ZERO as open-source software. Source code,
documentation and examples are available at www.getzero.one.

7.1 Why Games and Equilibria?

The pioneering book from Morgenstern and Von Neumann [115] and the seminal papers
from Nash [116, 117] transformed the scientific perspective on strategic behavior. The
ubiquitous concepts of Nash equilibrium and rationality are now cornerstone concepts in
Game Theory, with applications ranging from Economics to Social Sciences. The growing
interest in game dynamics in the Operations Research community reflects a need to extend
classical decision-making frameworks to multi-agent settings that can account for interactions
among multiple decision-makers. The community devoted particular interest – to name
a few – to bilevel programming (e.g., Basu et al. [13], Caprara et al. [26], DeNegre and
Ralphs [54], Fischetti et al. [72], Hu and Ralph [89], Kleinert et al. [94], Labbé and Violin
[99]) and its application in electricity markets and network pricing problems [21, 67, 100],

1A pre-print is available in [58].

www.getzero.one
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equilibrium problems with equilibrium constraints [31, 110], and more recently to integer
programming games [29, 32, 33, 47, 57, 82, 95]. On the one hand, such empowering modeling
capabilities unquestionably offer a tempting opportunity for extending the domain of influence
of Operations Research. Arguably, multi-agent optimization frameworks can help provide
enhanced models by contemplating the interactions decision-makers often take by pondering
the influence of other stakeholders (e.g., other players). Additionally, they can help embed
socially-beneficial outcomes by enlightening the nature of interaction among selfish decision-
makers. For instance, Carvalho et al. [31] provide insights on the role of a carbon tax in
competitive international energy markets, Carvalho et al. [28] prove that the most rational
outcome in their cross-border kidney exchange maximizes the social welfare (e.g., the sum
of the objectives of all players). On the other hand, multi-agent models are as helpful as
one can efficiently compute equilibria (or equivalent solution paradigms), thus highlighting
the importance of theoretical and practical contributions for computing them. We believe
that free and open-source software can foster experimentation in both practitioners’ and
researchers’ communities, and hopefully lead to novel methodological advancements in the
field.

7.1.1 Background.

In this context, we introduce ZERO, a modular C++ package to handle Reciprocally-Bilinear
Games (RBGs), a special class of Mathematical Programming Games (MPGs). An MPG
is a simultaneous game among n players, each of which solves a mathematical program
whose objective function is parametrized in other players’ variables, and whose feasible
region’s description does not include other players’ variables. Although MPGs are also
Nash equilibrium problems (NEPs) [63], the MPGs taxonomy we propose follows three
assumptions: (i.) a set of constraints, for instance, a set of linear constraints and integer
requirements, represent each player’s moves. This set may be unbounded, contain infinitely
or finitely many elements, and generally does not have a special structure. We do not assume
the players’ feasible sets to be continuous (i.e., in contrast to most of the NEPs literature),
nor that computing equilibria necessarily requires the solution of a complementarity problem,
(ii.) we aim to build a language intersecting both elements of Game Theory and Mathematical
Programming, (iii.) we aim to preserve the structure that constraints give to each player’s
problem. For instance, we may not drop any constraints to simplify the game without
damaging its modeling capability. For the above three reasons, we introduce the class of
MPGs to represent a wide variety of games among optimization problems.

ZERO provides support for a fundamental class of MPGs, namely the class of RBGs. Let the



107

operator (·)−i define (·) except i; e.g., if x = (x1, . . . , xn), then x−2 = (x1, x3, . . . , xn).

Definition 23 (Reciprocally-Bilinear Game [33]). A Reciprocally-Bilinear Game (RBG) is
an MPG among n players, where each player i = 1, 2, . . . , n solves the optimization problem

min
xi

f i(xi, x−i) = (ci)⊤xi + (x−i)⊤Cixi (7.1a)

s.t. xi ∈ X i (7.1b)

where X i ⊆ Rmi, and C and c are a matrix and a vector of appropriate dimensions, respectively.
An RBG is polyhedrally-representable if cl conv(X i) is a polyhedron for each i, and one can
optimize a linear function over each X i.

In RBGs, the i-th player objective function f i(xi, x−i) – or payoff function for i – is linear
in xi and contains bilinear products with xi and x−i. Further, since RBGs are MPGs, the
description of each player’s feasible region X i does not contain other players’ variables, and the
i-th player optimization problem is parametrized in x−i, namely plugging x−i as a parameter
results in an optimization problem purely in the variables xi. When n = 1, the RBG in
Definition 23 is a single optimization problem in xi. Whenever n > 1, RBGs become expressive
models extending typical Operations Research tasks – such as resource allocation, scheduling,
or routing – to a multi-agent setting. Consider, for instance, the emblematic 0/1 Knapsack
Problem; given a set of items, a decision-maker selects some of them to maximize the sum
of the profits associated with each item, subject to a capacity constraint. A multi-agent
extension of this problem is the so-called Knapsack Game as in Example 5, where n players
simultaneously solve a 0/1 Knapsack Problem.

Example 5 (Knapsack Game). A Knapsack Game is an RBG where each player solves the
optimization problem

max
xi
{(ci)⊤xi + (x−i)⊤Cixi : (ai)⊤xi ≤ bi, xi ∈ {0, 1}mi} (7.2)

where mi is the number of items for player i, bi ∈ Z, ai ∈ Zmi, ci ∈ Zmi, and Ci is an
integer-valued matrix of appropriate size.

In this game, player i has not only to consider a feasible packing of items maximizing the
profits associated with the vector ci, but has to look out for the positive or negative impact of
the interaction of its packings with the ones of its opponents (the Ci products). Besides being
an RBG, the Knapsack Game is also an Integer Programming Game (IPG), namely an MPG
where each player solves a mixed-integer problem [95]. The sets cl conv(X i) are the so-called
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integer hulls associated with each player’s 0/1 knapsack polytope, and each point x̄i ∈ X i

is a pure-strategy for i, namely a solution to the knapsack problem for i. In general, each
σ̃i ∈ cl conv(X i) is a mixed-strategy, namely a point inside the 0/1 knapsack polytope. The
central question is then to determine what is a solution to the above game. In an optimization
problem, we usually search for an optimal solution that maximizes (minimizes) the objective
function while fulfilling the constraints. However, in a game, a solution should be stable,
meaning that it should be mutually optimal for all the players, and not only a subset of
them. The most famous solution paradigm in Game Theory is the one of Nash Equilbirum, a
solution where each player cannot unilaterally deviate from it while improving its payoff. We
formally define the concept of Nash equilibrium for RBGs in Definition 24; we remark that in
Definition 23 players are minimizing their objective functions, and improving a payoff means
decreasing it.

Definition 24 (Pure-Strategy Nash Equilibrium). A strategy profile x̄ = (x̄1, . . . , x̄n) is a
Pure-Strategy Nash Equilibrium for an RBG as in Definition 23 if, for each player i and
strategy x̃i ∈ X i, then f i(x̄i, x̄−i) ≤ f i(x̃i, x̄−i).

In other words, at the equilibrium x̄ = (x̄1, . . . , x̄n), no player i can possibly pick a strategy
x̃i ≠ x̄i so that f i(x̄i, x̄−i) > f i(x̃i, x̄−i). In this sense, the equilibrium strategy is resilient
to the moves of each player’s opponents and provides a mutually-optimal solution. The
Mixed-Strategy Nash equilibrium relaxes the definition of Pure-Strategy Nash equilibrium by
allowing players to select not only pure-strategies, but in general mixed-strategies.

7.2 Our Contributions

ZERO provides advanced and modular C++ toolkits to formulate RBGs and compute their
Nash equilibria, with high-level APIs for practitioners and low-level ones for researchers and
experienced users. We summarize the most important contributions as follows.

(i.) ZERO is the first library to support non-cooperative simultaneous games where players
solve mathematical programs. Other Game Theory solvers, such as Gambit [113] only
support finite games in normal form (games with finitely many players, finitely many
strategies and outcomes).

(ii.) The library has a modular structure designed for allowing extensibility. Each component
– or module – independently performs a specific task and interacts with the others through
well-defined interfaces. For instance, the natively embedded algorithms interface with
the base modules allowing the development of sophisticated computational routines.
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Users can either use the included algorithms or implement custom ones depending on
the desired level of control.

(iii.) The library is an abstract layer bridging typical Mathematical Programming and Game
Theory and focuses on the interaction and orchestration among external libraries and
native modules. We delegate most of the standard mathematical programming routines
to specialized software, thus integrating popular and well-maintained tools available in
the Operations Research community. For instance, we solve mathematical programs
through Gurobi [83] and PATH [70], we generate cutting planes with Coin-OR Cgl [109],
and we perform linear algebra operations through Armadillo [132].

(iv.) ZERO can work as an off-the-shelf solver for RBGs without the need for a deep technical
understanding of the algorithmic details. We provide a series of high-level interfaces
designed specifically for some classes of RBGs, along with standardized instance file
schemes and plug-and-play shell executables. On the one side, ZERO provides high-level
APIs for practitioners and industrial parties to experiment with our high-level APIs.
On the other side, we target experienced users by offering advanced tools to build
sophisticated models and algorithms.

7.3 Overview

We briefly give an overview of ZERO: the detailed documentation for the software is available
online at www.getzero.one. Our library currently supports any polyhedrally-representable
RBG, and further provides additional tools (i.e., high-level modeling APIs) for two specific
types of games. First, IPGs, namely MPGs where each player solves an integer program; in
particular, ZERO supports IPGs that are also RBGs, and hence have a bilinear objective
as in Definition 23. Second, Nash games Among Stackelberg Players (NASPs), a class of
Equilibrium Problems with Equilibrium Constraints among the leaders of continuous bilevel
games [31].

Modules and Namespaces. ZERO’s modules are classes defined inside a suitable
namespace, namely a larger scope grouping modules with similar functions or goals. In
the sequel, we provide an overview of the software architecture. The namespace MathOpt
contains the necessary optimization tools for defining and solving mathematical programs
– for instance, MathOpt::IP_Param for parametrized mixed-integer linear programs, and
MathOpt::LCP for linear complementarity problems (LCPs) – as well as helper functions
(e.g., MathOpt::convexHull for computing the convex hull of a union of polyhedra). This

www.getzero.one


110

class provides a layer between ZERO and the external solvers such as Gurobi and PATH.
Arguably, the most relevant namespace is the one of Games, which implements the abstraction
of specific RBGs, such as Games::IPG for IPGs, and Games::EPEC for NASPs. The modules
inside this namespace orchestrate a tight integration among all the other modules and provide
several low-level APIs to the user. The namespace Algorithms contains the algorithms
to compute the Nash equilibria for RBGs. Such algorithms are inside the modules of
this namespace and closely coordinate with the modules in Games; for instance, the class
Algorithms::IPG::CutAndPlay associated with the Cut-And-Play algorithm for IPGs and
NASPs [33] coordinates with both Games::EPEC and Games::IPG. Other than advanced users,
ZERO aims to target practitioners that may only be interested in plug-and-play usage of the
software. Thus, in the namespace Models we provide high-level APIs allowing users to quickly
model and solve off-the-shelves instances of IPGs and NASPs. Furthermore, we propose a
standardized format for instances encoded through the data-interchange format JSON [123],
and integrate complementary helper functions to manage the input and output files. We also
include two shell executables working with standardized instance formats allowing users to
deploy the algorithms and solve instances on the run. Finally, the namespace Utils provides
some simple helper functions for writing and reading files, as well as additional numerical and
linear algebra utilities. Figure 7.1 provides a schematic representation of the architecture.

PolyLCP                      
(LCP)

NashGame
EPEC IPG

AlgorithmsGames

AbstractGame

MathOpt

LCP

MP_Param

QP_Param        
(MP_Param)

IP_Param         
(MP_Param)

IPG            
(AbstractGame)

EPEC          
(AbstractGame)

Utils

Solvers

CutAndPlay CutAndPlay

ZERORegretsPolyBase

FullEnumeration 
(PolyBase)

InnerApprox    
(PolyBase)

ComblPNE 
(PolyBase)
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EPEC              
(Game:::EPEC)

IPG                  
(Game:::IPG)

Figure 7.1 A schematic view of ZERO’s modules, 10000 lines of code, 50 files, 40 classes,
and 450 functions. The namespaces are in gray, and the relative content is grouped below.
The primitive classes are in purple, and the associated inheritor classes are in blue. Nested
namespaces are in green.
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7.4 Modeling the Knapsack Game

We showcase how to model an instance of the Knapsack Game of Example 5 with ZERO.
Let blue be Player 1 and red be Player 2. Each player i seeks to pack mi = 2 items into its
knapsack with capacity bi = 5. The optimization problems for blue and red are in (7.3) and
(7.4), respectively.

max
x1

x1
1 + 2x1

2 − 2x1
1x

2
1 − 3x1

2x
2
2 (7.3a)

s.t. 3x1
1 + 4x1

2 ≤ 5, x1 ∈ {0, 1}2

(7.3b)

max
x2

3x2
1 + 5x2

2 − 5x2
1x

1
1 − 4x2

2x
1
2 (7.4a)

s.t. 2x2
1 + 5x2

2 ≤ 5, x2 ∈ {0, 1}2

(7.4b)

This problem has 3 Nash equilibria: the Pure-Strategy Nash equilibria (x1
1, x1

2, x2
1, x2

1) =
(0, 1, 1, 0), (x1

1, x1
2, x2

1, x2
1) = (1, 0, 0, 1), and the Mixed-Strategy Nash equilibrium (x1

1, x1
2, x2

1, x2
1) =

(2
9 , 7

9 , 2
5 , 3

5). We attempt to find one of them by using the Cut-And-Play algorithm from [33].
Intuitively, this algorithm iteratively refines each players’ feasible region starting from its
linear relaxations (i.e., the polyhedron given by dropping the integrality constraint in either
(7.3) or (7.4)). Specifically, the algorithm iteratively refines the linear relaxations adding
cutting planes (some of which generated by Cgl from Coin OR [109]) or by branching until it
finds a Nash equilibrium.

Modeling and solving with ZERO. Figure 7.2 demonstrate the use of our high-level
API for IPGs by modeling the Knapsack Game in (7.3) and (7.4). We start by including the
only header file zero.h in Step 1 – which contains the specifications for the entire library
– and by creating a new Gurobi environment in Step 4. In Step 5 we create a new empty
IPG instance (Models::IPG::IPGInstance), which we will later populate with the programs
in (7.3) and (7.4). From Step 7 to Step 12, we create the objects holding the data for
the integer programs, for instance, the vector a for the knapsack constraint and the vector
IntegerIndexes containing the indices of the integer-constrained variables. We fill in the
data from (7.3) from Step 14 to Step 21, and create the (parametrized) integer program for
player blue in Step 24 with a constructor of MathOpt::IP_Param. The latter class infers the
number of parameters – namely the number other players variables – by counting the number
of rows of C1; in this case, the parameters are 2, and they are associated to the choices of
Player 2. From Step 26 to Step 29, we iterate this data-filling process for red, and eventually
add the two parametrized integer programs to the IPG_Instance in Steps 32 and 33. In
Step 34, we save the instance with the standardized data format for ZERO instances. The
solution process starts from line Step 35, where we instantiate – in the object KnapsackGame
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1 # include <zero.h>
2
3 int main(int argc , char ** argv) {
4 GRBEnv GurobiEnv ;
5 Models :: IPG :: IPGInstance IPG_Instance ; // The IPG Instance
6 int numItems = 2, numPlayers = 2;
7 arma :: vec c( numItems ); // Profits c in the objective
8 arma :: sp_mat C( ( numPlayers -1) * numItems , numItems ); // C terms in the objective
9 arma :: sp_mat a(1, numItems ); // LHS for Knapsack constraint

10 arma :: vec b(1); // RHS for constraints
11 arma :: vec IntegerIndexes ( numItems ); // The index of the integer variables
12 VariableBounds VarBounds = {{0 , 1}, {0, 1}}; // Implicit bounds (LB ,UB) on variables .
13
14 // Fill the values in the parameterized integer problem
15 b(0) = 5; // Knapsack Capacity
16 for ( unsigned int i = 0; i < numItems ; ++i)
17 IntegerIndexes .at(i) = i;
18
19 C(0, 0) = 2; C(1, 1) = 3; // C terms in the objective for player Blue
20 a(0, 0) = 3; a(0, 1) = 4; // Knapsack Constraints
21 c(0) = -1; c(1) = -2; // The standard is minimization , hence minus
22
23 // Create a parametrized Integer Program for player Blue
24 MathOpt :: IP_Param PlayerBlue (C, a, b, c, IntegerIndexes , VarBounds , & GurobiEnv );
25
26 // Parametrized Integer Program for player Red.
27 C(0, 0) = 5; C(1, 1) = 4; a(0, 0) = 2; a(0, 1) = 5; c(0) = -3; c(1) = -5;
28
29 MathOpt :: IP_Param PlayerRed (C, a, b, c, IntegerIndexes , VarBounds , & GurobiEnv );

30
31 // Add the players to the instance . We can also specify a file path to write the instance
32 IPG_Instance . addIPParam ( PlayerBlue , " PlayerBlue_KP ");
33 IPG_Instance . addIPParam (PlayerRed , " PlayerRed_KP ");
34 IPG_Instance .save(" A_Knapsack_Game "); // Save the instance with the standardize format

35 Models :: IPG :: IPG KnapsackGame (& GurobiEnv , IPG_Instance ); // Create a model from the
instance

36 // Select the equilibrium to compute a Nash Equilibrium
37 KnapsackGame . setAlgorithm (Data :: IPG :: Algorithms :: CutAndPlay );

38 // A few optional settings
39 KnapsackGame . setDeviationTolerance (3e -4); // Numerical tolerance
40 KnapsackGame . setNumThreads (4); // How many threads , if supported by the solver ?
41 KnapsackGame . setLCPAlgorithm (Data :: LCP :: Algorithms :: MIP); // How do we solve the LCPs?
42 KnapsackGame . setTimeLimit (5); // Time limit in second
43 KnapsackGame . finalize (); // Lock the model
44 // Run and get the results
45 KnapsackGame . findNashEq ();
46 KnapsackGame .getX ().at (0). print (" Player Blue:"); // Print the solution
47 KnapsackGame .getX ().at (1). print (" Player Red:");
48
49 }

Figure 7.2 An Example of a C++ instantiation of a 2-player Knapsack Game in ZERO

– an IPG model with the data contained in IPG_Instance. We employ the constructor of
Models::IPG::IPG by also specifying a pointer to the Gurobi environment. In Step 37, we
instruct ZERO to use the Cut-And-Play algorithm to solve KnapsackGame. In Steps 38 and 43,
we set some extra options, and finally start computing the Nash equilibria in Step 45 by calling
the method Models::IPG::IPG::findNashEq(). We print the Nash equilibrium found by
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the Cut-And-Play in Steps 46 and 47.

7.5 Conclusions and Future Directions

We introduced ZERO, a multi-purpose C++ library offering the base ingredients to help
users model and solve RBGs. On the one side, ZERO implements high-level and intuitive
APIs to formulate RBGs and solve them. On the other side, its modular and extensive
design enables advanced users and researchers to build customized algorithms. A current
limitation of ZERO is the availability of only two mathematical programming solvers. We
plan to extend further the support for other solvers, such as SCIP [77]. Furthermore, we
believe future methodological advancements will likely enable us to extend our support to
other classes of MPGs and RBGs. Naturally, this is conditional to the development of the
appropriate mathematical tools to do so. Indeed, we release ZERO with the ambition to
foster methodological and applied research in this newly developing field at the intersection
of Game Theory and Mathematical Programming.
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CHAPTER 8 GENERAL DISCUSSION

The ideas and works we presented in Chapters 4 to 7 constitute an heterogeneous set of
contributions to the objectives of this thesis. Throughout the chapters, we often addressed
intersecting research questions from different perspectives: we provided results ranging from
computational complexity to algorithms to compute equilibria, and from their selection to
their application in energy. This section reviews some diagonal themes that matured and
emerged through the thesis. We believe the interpretations we provide can serve as useful
keys for summarizing our work and further developing it.

In this thesis, we exploited the MPG representation to provide theoretical results concerning the
properties of equilibria, such as their efficiency, their geometrical structure, and computational
complexity results. All such properties are instrumental for the design of efficient algorithms
to compute and select equilibria: indeed, from a computational standpoint, we also provided
novel algorithms and computational frameworks for computing and selecting equilibria in
MPGs. In order to derive our theoretical and computational results, we often relied on the
structure of the optimization problems associated with each player decision problem, and
we employed different algorithmic methods. For instance, while in Chapter 5 we exploited
complementarity methods to compute Nash equilibria for RBGs, in Chapter 4 we provided a
diametrically different approach for IPGs based on the iterative solution of a series of integer
programs.

In Chapter 4, we introduced ZERO Regrets, a cutting plane algorithm that can select
and optimize over the set of PNEs in IPGs. By devising concepts such as equilibrium
inequality, equilibrium separation oracle, and equilibrium closure, archetypical tools of integer
programming acquire a game-theoretic role. The approach we proposed stems from the
geometrical structure of each player’s integer program and characterizes the set of PNEs as a
polyhedron. The final methodology we provided is general, can handle PNE selection, and
only assumes each player is solving an integer program with linearizable payoff functions.
We also intertwined the aims of AGT and MPGs by studying the computational aspects of
the weighted NFG, a paradigmatic problem from AGT . We showed the game reformulates
through an equivalent IPG and that ZERO Regrets provides an efficient way to discriminate
among the possibly many PNEs in the game. Up to our knowledge, this is the first successful
and efficient attempt to select (exact) PNEs (if any) in the weighted 3-player version of the
NFG, where we managed to prove efficient PNEs exist (i.e., PNEs with a low PoS) even in
large instances. Although providing bounds on equilibria efficiency is unequivocally necessary,
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we believe that computing equilibria approaching those bounds is highly relevant for two
main reasons. First, designing efficient equilibria selection algorithms is far from being trivial
and often provides new perspectives on the game’s underlying structure. Second, specific
applications may benefit from computing efficient and exact equilibria instead of approximated
ones. In this sense, we believe an algorithmic perspective on equilibria selection complements
the rich theory on equilibria’s existence and efficiency.

In Chapter 4, we also considered the KPG, a game expressed as an extension of the binary
knapsack problem, a classical combinatorial optimization problem. We analyzed the efficiency
of its equilibria and proved that, unfortunately, the PoS and PoA may be arbitrarily bad.
In contrast to the NFG, the KPG is an extension of a classical combinatorial problem and
attracted way less attention than the NFG. Although one may re-design the game to fulfill
some desired computability and efficiency properties – i.e., a bounded PoS or a potential
argument for the existence of a PNE– we believe this may not always be the case. Indeed,
we claim that representing the decision-makers’ complex set of operational requirements
through constraints of MPGs increases modelization fidelity. Formulating games through
the optimization problems of their players is crucial to express a more heterogeneous set
of constraints often stemming from an application’s requirement. This is the case for the
NASP’s energy application in Chapter 6, where regulatory constraints shape the pattern
of a complex sequence of hierarchical interactions among energy producers and regulatory
agencies. The energy NASP does not possess such well-desired computability properties, and
in fact, it may not even admit an equilibrium in its general form. Although our model is
simple, the inherent complexity of additional regulations and constraints may increase the
need for a richer NASP model. Finally, even in our simple NASP, the equilibria provide
valuable insights and new perspectives on the decision-making dynamics in an energy market
with environmental incentives and carbon taxes.

The need for computing equilibria in more general games led us to develop CnP . Throughout
Chapter 5, we provided a methodology leveraging the concept of outer approximation. In
optimization, outer approximations of feasible regions – and more specifically relaxations
– provide insightful bounds on the optimal solution of the original problem; however, this
seemed not to be the case with Nash equilibria and outer approximated games. Following this
observation, we devised CnP by taking inspiration from the Branch-and-Cut algorithm. CnP
combines an implicit scheme for enumerating the search space and a cutting plane method.
It exploits mathematical and integer programming ingredients – such as separation oracles,
disjunctive programming, cutting planes – to efficiently compute equilibria in polyhedrally-
representable RBGs. Centrally, it allows a better interplay between the existing optimization
frameworks and GT . Indeed, one of the critical aspects of CnP is the interoperability between
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the algorithm and the established MIP technology.

The order of presentation of our works is willingly anachronistic. Each contribution is the result
of a series of interactions with the other works, the first of one being the one in Chapter 6. The
characterization of the convex hull of each NASP ’s leader we provided in Chapter 6 provided
the funding element for CnP in Chapter 5. Under the assumption of reciprocally-bilinear
objective payoffs, we introduced the class of RBGs and generalized the result of Theorem 14
to this broader family of games. With CnP algorithm, we devised a generic methodology
dichotomic to the inner approximation hierarchy we proposed in Chapter 6. The Enhanced
Separation Oracle of Chapter 5 mimics, in fact, the inner approximation scheme of Chapter 6.
While developing CnP , we soon faced a problem of paramount importance. There seemed no
easy way to select equilibria. When CnP computes a feasible MNE for the original game,
this equilibrium can be the “best” one (i.e., the MNE maximizing a desired property) in the
given game’s approximation but not necessarily in the original game.

The issue of selection is, in fact, not problematic in what we proposed in Chapter 4. While
ZERO Regrets does not extend to RBGs, it works with discrete variables. The contribution
of Chapter 4 started as a study on the theoretical and computational properties of the KPG
and later extended to the NFGs and a larger class of IPGs. The connection with equilibria
selection became apparent where we generalized a class of inequalities we found for the NFG
(Proposition 1). In practice, what we proposed in the inequalities of Proposition 1 is a lower
bound on the payoff of each player; once we have one of its feasible strategies, we can always
compute the bound. The class of inequalities we introduced involves variables from multiple
players and motivated the theoretical and practical framework of Chapter 4. Remarkably,
these inequalities are sufficient to represent the set of equilibria in IPGs with linearizable
payoffs, and gave us what we defined as the perfect equilibrium formulation. As in a cutting
plane method, one does not need the perfect formulation to retrieve a feasible optimal solution
or, in our case, a PNE maximizing a given property. Instead, to optimize over the PNEs, we
only need an intermediate polyhedron between the perfect equilibrium formulation and the
set of pure strategies for the game. We also presented a solid game-theoretic interpretation of
ZERO Regrets. The algorithm acts as a central authority by proposing, at each iteration,
a collective solution to the players. This solution is an integer-feasible strategy profile that
maximizes a given property, but it is not necessarily an equilibrium for the game. The selfish
players will then individually ask a trusted rationality blackbox – the separation oracle –
whether they should accept the proposed strategy or not. Whenever the rationality blackbox
advises a player to refuse a solution, it will also provide an interpretable refusal criterion
through a cutting plane. The central authority then computes a new collective solution
considering the players’ additional suggestions.
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Finally, as we stressed the importance of computing equilibria to understand their role, we also
advocated for lower barriers to entry in MPGs with ZERO. As the MPG methodology should
advance, so should the availability of collaborative and open-source software. In Chapter 7, we
aimed to give the community a package to foster experimentation for practitioners, researchers,
and industrial players.
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CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS

This thesis proposes new perspectives to better grasp the dynamics of multi-agent strategic
decision-making in competitive settings where agents are solving optimization problems. The
research we propose lies at the interface of AGT and Mathematical Optimization and analyzes
the strategic interaction among decision-makers through the lenses of a unified framework
integrating elements of the two disciplines. We proposed the taxonomy of MPGs and explored
algorithmic and theoretical matters concerning Nash equilibria existence, computability, and
selection. In the following, we briefly summarize the work and provide some considerations
concerning the boundaries of our work and future research directions.

9.1 Summary of Works

In Chapter 4, we designed an algorithmic and theoretical framework to compute and select
PNEs for a class of IPGs. By devising concepts such as equilibrium inequality, equilibrium
separation oracle, and equilibrium closure, archetypical tools of integer programming and
optimization acquire a game-theoretic role. We introduced ZERO Regrets and proved
its practical effectiveness by testing on instances of the NFG and the KPG. We further
characterized the complexity of deciding whether the KPG admits a PNE and showed that
the prices on its equilibria may be arbitrarily bad. Finally, we showcased an extensive set
of computational results highlighting the existence of efficient equilibria in both games and
demonstrated the viability and performance of our algorithm.

In Chapter 5, we introduced CnP , a general-purpose algorithm to compute MNEs for RBGs.
Our methodology employs the concept of outer approximation and leverages the rich theory
of integer programming. The algorithm we proposed computes MNEs by solving a series
of “easier” outer-approximated games and combines an implicit enumeration scheme with a
cutting plane method. CnP is general in its design and integrates the existing theory and
tools from optimization into a unified framework for computing equilibria. We provided
extensive computational results on both NASPs and KPGs.

In Chapter 6, we considered a series of hierarchical interactions among the players of Stack-
elberg games and introduced the novel class of NASPs. The games feature sequential and
simultaneous multi-level interactions and are powerful modeling tools for energy markets and
cybersecurity insurance. We characterized the computational complexity associated with
determining the existence of an equilibrium in the game, and we provided two algorithms
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to compute equilibria. From a practical perspective, we presented a case study on the
Chilean-Argentinean energy market and derived a set of managerial insights stemming from
the associated Nash equilibria.

Finally, in Chapter 7 we introduced ZERO, a software package providing all the necessary
ingredients to experiment with RBGs. We released an open-source package to lower the
barrier to entry in the field, hoping to boost methodological developments and practical
applications of RBGs.

9.2 Extensions and Future Research

MPGs are powerful modeling tools and can help embed game dynamics inside consolidated
optimization models. We think the results reported in this thesis constitute a first effort
towards developing a unified framework for the interplay of AGT and Mathematical Opti-
mization; indeed, the ultimate goal of this thesis is to promote a better integration of the two
disciplines. We are cautiously optimistic about the future of MPGs, and we believe significant
improvements and future developments lie ahead.

Methodologically, we believe there is room – if not the need – for developing more sophisticated
algorithms and theoretical frameworks for MPGs. The problem of computing equilibria and
selecting them are far from being fully understood, and novel algorithms for these tasks
may even provide new perspectives on general equilibria selection. Further, integrating
mathematical programming techniques may also propel new methodological and practical
advancements. Practically, we believe many industrial and applied tasks may benefit from the
frameworks MPGs provide. Industrial applications unequivocally promoted developments of
integer programming, especially since several applications required integer variables to model
indivisible quantities. With the same spirit, we believe that an enhanced effort on attacking
applications through MPGs can hopefully lead to similar results. Further, the informative
content of Nash equilibria can provide socially beneficial and explainable prescriptive policies
for decision-makers; in the same fashion of our analysis in Chapter 6, we hope the approach
can provide similar insights in other application domains. This type of analysis may confirm
or invalidate the role of Nash equilibria as solutions in such contexts and shed new light on
alternative solution concepts.

Moreover, this thesis considers the Nash equilibrium as the leading solution concept. We
assume complete information and common knowledge of rationality for any player and call
a player rational when it has no incentive to accept a lower payoff if a better option exists.
However, different equilibria or solution concepts may also suit the scope of MPGs. The
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ZERO Regrets algorithm of Chapter 4 can, for instance, select solutions with a bounded
regret by appropriately modifying each player’s separation oracle. By allowing a deviation
bounded by a given constant k, the algorithm selects strategy profiles where each player’s
regret is at most k. Naturally, when the regrets are 0 for any player, the profile is also a Nash
equilibrium. An interesting question is whether we can further relax the structure of ZERO
Regrets, and eventually of the CnP algorithm, to compute other types of equilibria.

Equilibria selection will probably be critical for ensuring MPGs’ equilibria are competitive with
single-minded or centrally-advised solutions, for instance, solutions from single optimization
problems. In Chapter 4, we provided an efficient way to select PNEs in IPGs; however, we
did not obtain a similar result for RBGs and MNEs in Chapter 5, despite many efforts. While
we have a selection result in Chapter 6, the algorithm we provided requires a computationally-
intense full enumeration of the players’ feasible sets, and hence the approach may be practically
hard to extend to other types of problems. Nevertheless, the existence of a methodology for
IPGs may constitute an encouraging step towards developing more general methods in RBGs.

Crucially, we believe there is room for developing new classes of equilibrium inequalities
for MPGs. Although in Chapter 4 we restricted to IPGs, the equilibrium inequalities
we presented may generalize to other MPGs. Perhaps, there exist stronger inequalities
eliminating some action from each player’s set of moves. In particular, inequalities restricting
each player’s feasible set to the set of “rationalizable” strategies, i.e., strategies that a player
may rationally play given some belief on its opponents. Understanding the geometry of the
sets of rationalizable moves in MPGs can provide a novel perspective on equilibria selection
other than practical improvements on MPGs computations.

Finally, and perhaps more importantly, we shall consider an ethical perspective. We believe
that embedding fairness paradigms into the decision-making process can be practically
impactful. In Chapter 1, we described the decision-makers as selfish and self-interested. In
an ideal world, decision-makers are benevolent and altruistic, and the outcomes are always
beneficial for the society. Unfortunately (for all of us), this is not often the case with individuals,
companies, governments. Understanding the dynamics of strategic interaction through MPGs
should provide better insights for advocating for a fairer use of optimization. Companies,
governments, and in general, organizations are likely to solve optimization problems to address
their day-to-day operational matters. MPGs embed complex game dynamics and have the
potential to provide solutions that are individually optimal, socially beneficial, and that
hopefully highlight some of the ethical issues related to the undisciplined and selfish use of
optimization.
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APPENDIX A THE CUT AND PLAY ALGORITHM

A.1 Proof of Theorem 4

Proof. We follow the same structure of the proof for Theorem 7 from Carvalho et al. [31].
First, since G and G̃ are separable games, the payoff any given player is as in (5.2). Also,
from the result of Stein et al. [140], both G and G̃ are separable games, all the MNEs (thus
any PNE) have finite supports or finite supports equivalents. For each player i, its payoff in
G̃ and G is linear in its variables xi.

PNE in G̃ is an MNE in G. Given the PNE σ̃ for G̃, we first show σ̃ is an MNE for G

by contradiction, thus assuming σ̃ is not an MNE in G. Assume i has a unilateral profitable
deviation from σ̃i to σ̄i in G, namely it can increase its payoff by playing the mixed-strategy
σ̄i. For construction, supp(σ̄i) should contain only pure strategies that are feasible for G,
i.e., for any i and ẋi ∈ supp(σ̄i) it follows that ẋi ∈ X i. Furthermore, since σ̄i is a profitable
deviation for i, then f i(σ̄i, σ̃−i) ≤ f i(σ̃i, σ̃−i). This clearly contradicts the assumption σ̃ is a
PNE for G̃. Thus, no deviation exists for either G or G̃.

MNE in G is a PNE in G̃. Let σ̂ be now an MNE for G. We show this is a PNE for G̃

by explicitly considering the sets cl conv(X i). First, σ̂ is also a feasible pure strategy profile
in G̃ since X i ⊆ cl conv(X i) for any i. The following equilibrium constraint is valid in G for
every player i, since we have an MNE σ̂:

f i(x̄i, σ̂−i) ≥ f i(σ̂i, σ̂−i) ∀ x̄i ∈ X i. (A.1)

We show (A.1) holds for any x̄i ∈ cl conv(X i). We multiply (A.1) on both sides by an
appropriately sized non-negative vector λ ≥ 0, with ∑|λ|

j=1 λj = 1. Clearly, all the resulting
equations hold because the payoff functions are linear in each player’s variable, and the
multipliers non-negative. Thus, (A.1) holds for any x̄i ∈ conv(X i). In order to prove (A.1)
holds also for the closure, we simply consider a convergent sequence of deviations x̄i

1, x̄i
2, . . .

where x̄i
j ∈ cl conv(X i) for any j, and limj→∞ x̄i

j = x̄i. Then:

f i(x̄i
j, σ̂−i) ≥ f i(σ̂i, σ̂−i) ∀ j. (A.2)
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We apply a limj→∞ operator to both sides, and obtain:

f i(x̄i, σ̂−i) ≥ f i(σ̂i, σ̂−i) ∀ j. (A.3)

Hence, we can simply compute a PNE on G̃ and arbitrarily map it to an MNE of G.
Furthermore, it follows that if G has no MNE , then G̃ has no PNE .

A.2 Proof of Proposition 3

Proof. Consider a generic player i. Note that we assume the infimum zi is finite. From the
definition of infimum, it follows that player i cannot achieve a payoff strictly less than zi

given the other players’ strategies σ̃−i. Consider now the optimization program of i where its
feasible set is replaced with cl conv(X i): player i attains a payoff of zi at least in one point
vi ∈ cl conv(X i). Namely, zi is a minimum for the optimization problem

zi = min
xi
{f i(xi, σ̃−i) : xi ∈ cl conv(X i)}. (A.4)

Let us define F i = {xi : xi ∈ cl conv(X i), f i(xi, σ̃−i) = zi}, which is also a face of cl conv(X i)
with vi ∈ F i. Assume there exist a best-response v̄i ∈ cl conv(X i) so that i can improve its
payoff by deviating to that strategy. Then, vi would not be a best-response to σ̃−i. Since all
the solutions of (A.4) are necessarily infima in X i with respect to f i(xi, σ̃−i), this would mean
that the optimal solution of (A.4) is v̄i, thus resulting in an absurdity.
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APPENDIX B WHEN NASH MEETS STACKELBERG

In this electronic companion, we complement the proofs of Section 6.3 in appendix B.1, the
pseudo-code for the PNEs algorithm in appendix B.3, and an overview of computational
instances in appendix B.4.

B.1 Extensions to proofs of hardness

Proof. Proof of Claim 1. All the constraints are linear, and by fixing the variables of the
other players, the objectives are also linear. Also, the follower is simply parameterized in their
leader’s variables. There are precisely two leaders, and their interaction follows the definition
of a simple Nash game. Hence – by definition – the game in (6.2) is a trivial NASP.

Proof. Proof of Claim 2. Notice that the constraints in (6.2h) enforce yi ≥ max(−xi, xi − 1),
and since yi is minimized, it has necessarily to be equal to max(xi − 1,−xi). However, if this
quantity should be non-negative – as enforced in (6.2c) – then either xi ≤ 0 or 1 − xi ≤ 0
should hold. The claim follows.

Proof. Proof of Theorem 12. The following bilevel problem gives the necessary extended
formulation. Variables z1, z2, . . . are the variables in the lifted space, which can be projected
out.

x ≥ 0 (B.1a)

y ≥ 0 (B.1b)

h ≥ 0 (B.1c)

y ≤ 1 (B.1d)

h ≤ x (B.1e)

z1, . . . , z6 ≥ 0 (B.1f)

(z1, , . . . , z6) ∈ arg min
z



6∑
i=1

zi :

z1 ≥ h− x ; z1 ≥ −h

z2 ≥ 1− y ; z2 ≥ −h

z3 ≥ y − 1 ; z3 ≥ −h

z4 ≥ x− h ; z4 ≥ −y

z5 ≥ h− x ; z5 ≥ −y

z6 ≥ y − 1 ; z6 ≥ −y


(B.1g)
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Proof. Proof of Theorem 13. If S has an extended formulation given by {(x, y) : ASx+BSy ≤
bS; y ∈ arg min{fT

S y : CSx + DSy ≤ gS}}, and if T has an extended formulation given by
{(x, y) : AT x + BT y ≤ bT ; y ∈ arg min{fT

T y : CT x + DT y ≤ gT}}, then the following is an
extended formulation of S × T :

{(x, y, u, v) : ASx + BSy ≤ bS; AT u + BT v ≤ bT ;

(y, v) ∈ arg min{fT
S y + fT

T v :
CSx + DSy ≤ gS

CT u + DT y ≤ gT

}}

Proof. Proof of Claim 6. All constraints are linear, and the objectives are linear given the
other players’ decisions as parameters. The constraints (6.5h) are valid due to Theorem 12.
Also, for Theorem 13, we can have multiple bilevel constraints in (6.5h) and (6.5i). Each
follower is simply parameterized in their leader’s variables. There are precisely two leaders,
and their interaction follows the definition of a simple Nash game.

B.2 NASP with only MNEs

Example 6. Considering the following Latin-Greek trivial NASP.

Latin Player

max
x,y

: x1ξ1 + x2ξ2 (B.2a)

x, y ≥ 0 (B.2b)

x ≤ 1 (B.2c)

x1 + x2 = 1 (B.2d)

y ∈ arg min
y

y1 + y2 :
yi ≥ −xi

yi ≥ xi − 1
for i = 1, 2

 (B.2e)
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Greek Player

max
ξ,χ

: x2ξ1 + x1ξ2 (B.2f)

ξ, χ ≥ 0 (B.2g)

ξ ≤ 1 (B.2h)

ξ1 + ξ2 = 1 (B.2i)

χ ∈ arg min
χ

χ1 + χ2 :
χi ≥ −ξi

χi ≥ ξi − 1
for i = 1, 2

 (B.2j)

The only feasible decisions for both the Latin and the Greek player in(B.2) are {(1, 0, 0, 0), (0, 1, 0, 0)}.
So the game can be written as a normal form game. We can compute the payoffs for these
finitely many strategies so that if the Latin and the Greek player choose the same strategy,
then the Latin player gets a payoff of 1 and the Greek player gets a payoff of 0. If they choose
different strategies, the Latin player gets a payoff of 0, and the Greek player gets a payoff of 1.
One can easily check that this game’s unique Nash equilibrium is an MNE and that no PNE
exists.

B.3 Enumeration algorithm for PNEs

Algorithm 7 reports the pseudo-code for the algorithm described in Section 6.5.2.

B.4 Computations

Governments act as Stackelberg leaders by trading energy, intending to minimize emissions,
and eventually maximize tax incomes. Energy producers act as Stackelberg followers within
each country and play a Nash game between themselves, aiming to maximize their profits.
Each country is interested in imposing a tax that prevents profitable domestic production, as
it is constrained to keep the domestic energy price less than a predetermined threshold. We
present the optimization problems of the players formally below. For ease of understanding,
the quantities in red are parameters, i.e., inputs to the model. Furthermore, the quantities in
blue are decision variables, decided by the country or of the energy producers in the same
country. Quantities in green are variables in a problem but not decided by the country in
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Algorithm 7: Enumeration algorithm to obtain a PNE for a NASP
Data: A description of NASP N = (P 1, . . . , P n)
Result: For each i = 1, . . . , n, a pure-strategy x̂i, such that the strategy profile is a

PNE or a proof that no PNE exists
1 for i = 1, ..., n do
2 Enumerate the polyhedra whose union defines the feasible set Fi of P i;
3 F̃i ← cl conv Fi by applying Theorem 8;
4 P̃ i ← objective function of P i and a feasible set of F̃i;
5 Let Ñ = (P̃ 1, ..., P̃ n) be the facile Nash game ;
6 Enforce δi

j for i = 1, . . . , n, j = 1, . . . , gi in Ñ to be binary and solve Ñ ;
7 if Ñ is infeasible then
8 There is no PNE for N ; return failure

9 else return Project the solution of Ñ to the space of the original variables of N ;

consideration. Each country C solves the following problem.

min
qp,tp,

qC′→C
imp ,qC

exp

:
∑

p∈P

Cp
emmisionqp − btpqp

+
∑

C′∈C \C

πCqC′→C
imp − πCqC

exp (B.3a)

subject to tp ≤ tp (B.3b)

αC − βC

∑
p∈P

qp + qC
imp − qC

exp

 ≥ πC (B.3c)

∑
C′∈C

qC′→C
imp = qC

imp (B.3d)

qp ∈ SOL(Lower Level Nash Game) (B.3e)

Cp
emmision is the dollar value of the emission caused by producer p while producing a unit

quantity of energy. This number is the product of cost incurred due to the emission of one
unit of greenhouse gases (GHG), sometimes referred to as the social cost of carbon and the
quantity of GHG emitted for each unit of energy produced by the producer p, called as the
emission factor. b dictates whether the objective should include the tax revenue earned by the
government or not. qp is the quantity of energy produced by the producer p ∈P , qC

imp, qC
exp

are respectively import and export quantities, and αC , βC are the intercept and the slope of
the demand curve. αC − βCQ is the domestic price for each country, where Q is the quantity
of energy available domestically. Finally, πC is the price at which the country can import
energy from other countries, hence the variable linking the optimization problems of different
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countries. Thus, πC can be interpreted as the shadow price to the market-clearing constraint

∑
C′∈C

qC→C′

imp =
∑

C∈C

qC
exp. (B.3f)

We note that including (B.3f) does not make the game into a generalized Nash game. This is
because we can rewrite (B.3f) as the KKT conditions of a fictitious optimization problem,
generally referred to as the invisible hand in the market. An alternative manner of looking
at this is as if there is perfect competition in the international energy markets and the most
efficient allocation of resources happens. This is again a standard simplifying assumption
considered, for example, in Egging et al. [61, 62], Feijoo et al. [69], Gabriel and Leuthold
[74], Sankaranarayanan et al. [134].

Optionally for some countries, as a domestic policy, we introduce a carbon tax paradigm,
where the tax imposed on the followers is proportional to the emissions they cause. i.e., there
is a constraint tp = Cp

emmisiontGHG, where the government decides the tax payable per unit
emission. Furthermore, note that if b is non-zero, the objective is no longer linear. In such a
case, we replace the product term with a McCormick relaxation. Finally, tp, and πC are the
tax and price caps, respectively. The lower level problem that each producer p solves is as
follow:

min
qp

: Cpqp + 1
2Dpqp2 + tpqp −

αC − βC

∑
p′∈P

qp′ + qC
imp − qC

exp

qp (B.4a)

subject to qp ≥ 0 (B.4b)

qp ≤ qp (B.4c)

The first two terms in the objective correspond to the energy producer’s cost, while the third
term is the tax expense. The parenthesis results in the revenue of p, which is the product
of domestic price and the quantity produced. Further, the producer has a constraint on its
capacity limit. Note that the product of variables (tpqp) in the objective does not pose any
additional difficulty to the problem. This is because the follower’s problem is still convex
quadratic for a fixed value of tp, and the KKT conditions give complementarity constraints
with only linear terms.

Further, we also note that the previously-mentioned assumption of optimistic equilibrium
selection by the leaders and the limitations imposed, as a result, are irrelevant here. This is
because, for Dp > 0, which is always the case, the test examples have a unique lower-level
equilibrium. Thus any technique for equilibrium selection is not warranted.
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B.4.1 Instance sets

We generated three instances sets for our tests. (i) InstanceSetA contains 149 instances where
there are 3 to 5 countries (ii) InstanceSetB contains 50 instances with strictly 7 countries.
These instances were selected if Algorithm 5 was not able to solve them within 10 second on
a single core machine. (iii) InstanceSetInsights contains 50 instances with 2 countries with 3
followers each. Such instances are useful to derive managerial insights from our model. The
specific parameters for all these instances are described in Table B.1 and are available in our
open-source GitHub repository. All our tests run on a 8-cores Intel(R) Xeon Gold 6142, with
32GB of RAM and Gurobi 9.0.

Table B.1 Description of the parameters for EPEC instances.

Parameter Distribution Notes

Capacities 50, 100, 130, 170, 200, 1000, 1050, 20000 Each follower’s capacity is randomly drawn from these values.

Emission Costs 25, 50, 100, 200, 300, 500, 550, 600 The first two values are reserved for green producers. The
following two for averagely-polluting producers, while the
remaining three for highly-polluting ones.

Linear Costs 150, 200, 220, 250, 275, 290, 300 Linear costs are generally inversely proportional to the emis-
sion cost. For instance, a producer with a 50 emission cost
will generally have a linear cost around 290.

Quadratic Costs 0, 0.1, 0.2, 0.3, 0.5, 0.55, 0.6 Quadratic costs are generally inversely proportional to the
emission cost. Same rationale as linear costs.

Tax Caps 0, 50, 100, 150, 200, 250, 275, 300 Tax caps are assigned following the same rational of emission
costs. The lower the emission cost of a given producer, the
lower the maximum tax applicable to it.

Demand Alpha 275, 300, 325, 350, 375, 450 Each country alpha is randomly drawn from this set.

Demand Beta 0.5, 0.6, 0.7, 0.75, 0.8, 0.9 Each country beta is randomly drawn from this set.

Price Cap 0.8, 0.85, 0.90, 0.95 Each country price-limit is randomly drawn from this set. The
final price-limit is made of the product of this value and the
country’s demand alpha parameter.

Tax Paradigm Standard, Single, Carbon A country tax scheme can be: (i.) Standard, where followers
are taxed at different levels per unit-energy, or (ii. ) Single,
where all the followers are taxed with the same level per unit-
energy (iii.) Carbon, where all the followers are taxed with
the same level per unit-emission

.

B.4.2 Results tables

Tables B.2 and B.3 contains the full results for InstanceSetA and InstanceSetB, respectively.
The first three columns are the instance number, the number of leaders, and – for each leader
– their respective number of followers in squared parenthesis. The MNE column is the status
of the instance, namely if it has an equilibrium (YES), if it does not (NO), or if the time limit
was triggered (TL) for all the methods. In the remaining column, we report the clock time
and the status for each algorithmic configuration. In particular, we have Algorithm 5 (FE),
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and the inner approximations. We report three extension strategies, namely the sequential
(seq), the reverse sequential (rseq), and the random one (rand). They are followed by their
respective parameter k, as reported in Section 6.6. The last two columns are related to PNEs.

Table B.4 reports the results for InstanceSet Insights. The first column reports each instance’s
number. The second and third column are boolean values reporting whether the tax (Ta) and
the trade (Tr) are allowed (value of 1) or not. The following 16 columns are results for the first
country (Country One), while the remaining 16 are for the second country (Country Two).
Following the column order, for each country we report: the unit-energy production level
Prod, the domestic price per unit-energy $(E), the import Imp and export Exp unit-energies,
the export price $(E), and the tax per unit-emission Tax. Furthermore, for each of the the
3 followers of each country, we have the type Ty (C for coal, G for gas, or S for solar), the
associated emission cost per unit-energy E, and its production Prod.
Table B.2: MNE and PNE results for InstanceSetA. Columns: # - Instance Number. L -
Number of leaders in the instance. F - Number of followers each leader has. FE - Time taken
for full enumeration algorithm. seq1 to rand5 - Time taken for inner approximation with
different extension strategies. MNE- existence (or time limit reached TL). FE-P - Time for
full enumeration to find a PNE . PNE- existence (or time limit reached TL).

# L F FE seq1 seq3 seq5 rseq1 rseq3 rseq5 rand1 rand3 rand5 MNE FE-P PNE

1 3 [ 1 2 2 ] 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 NO 0.04 NO
2 3 [ 2 2 3 ] 0.07 0.15 0.08 0.08 0.16 0.08 0.08 0.16 0.08 0.08 NO 0.07 YES
3 3 [ 2 2 2 ] 0.05 0.13 0.06 0.06 0.13 0.06 0.06 0.13 0.06 0.06 NO 0.05 NO
4 3 [ 1 2 1 ] 0.04 0.10 0.05 0.05 0.10 0.05 0.05 0.10 0.05 0.05 NO 0.04 TL
5 3 [ 2 1 3 ] 0.33 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 YES 0.09 YES
6 3 [ 2 2 1 ] 0.06 0.18 0.11 0.07 0.18 0.11 0.07 0.18 0.11 0.07 NO 0.06 YES
7 3 [ 2 2 2 ] 0.06 0.14 0.07 0.07 0.14 0.07 0.07 0.14 0.07 0.07 NO 0.06 YES
8 3 [ 1 2 1 ] 0.10 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 YES 0.08 NO
9 3 [ 1 2 2 ] 0.05 0.10 0.06 0.06 0.10 0.06 0.06 0.10 0.06 0.06 NO 0.04 NO
10 3 [ 2 2 1 ] 0.16 0.24 0.17 0.17 0.13 0.19 0.20 0.24 0.20 0.20 YES 0.16 NO
11 3 [ 3 2 2 ] 0.08 0.22 0.15 0.09 0.23 0.14 0.09 0.22 0.14 0.09 NO 0.08 NO
12 3 [ 2 2 2 ] 0.76 1.50 1.41 1.07 0.38 0.28 0.79 1.72 1.77 0.55 YES 2.07 YES
13 3 [ 2 1 2 ] 0.04 0.07 0.05 0.05 0.07 0.05 0.05 0.07 0.05 0.05 NO 0.04 NO
14 3 [ 2 1 3 ] 0.06 0.13 0.07 0.07 0.13 0.07 0.07 0.13 0.07 0.07 NO 0.06 NO
15 3 [ 2 1 2 ] 0.39 0.08 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 YES 0.18 NO
16 3 [ 2 3 2 ] 5.73 5.07 7.68 4.83 0.37 1.48 12.19 13.49 1370.28 1.30 YES TL YES
17 3 [ 2 2 2 ] 0.06 0.13 0.07 0.07 0.13 0.07 0.07 0.13 0.07 0.07 NO 0.06 YES
18 3 [ 2 2 2 ] 0.79 0.15 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 YES 3.17 NO
19 3 [ 2 2 2 ] 0.07 0.16 0.08 0.08 0.16 0.08 0.08 0.16 0.08 0.08 NO 0.07 NO
20 3 [ 1 3 2 ] 0.05 0.09 0.06 0.06 0.09 0.06 0.06 0.09 0.06 0.06 NO 0.05 NO
21 3 [ 1 2 2 ] 0.04 0.11 0.06 0.06 0.12 0.06 0.06 0.11 0.06 0.06 NO 0.05 YES
22 3 [ 2 1 1 ] 0.04 0.10 0.05 0.05 0.10 0.05 0.05 0.10 0.05 0.05 NO 0.04 NO
23 3 [ 1 2 1 ] 0.09 0.13 0.11 0.11 0.10 0.11 0.11 0.13 0.11 0.11 YES 0.07 YES
24 3 [ 2 2 1 ] 0.05 0.14 0.09 0.06 0.14 0.09 0.06 0.14 0.09 0.06 NO 0.05 YES
25 3 [ 2 2 2 ] 0.14 0.24 0.17 0.17 0.14 0.16 0.17 0.12 0.17 0.17 YES 0.12 NO
26 3 [ 2 2 2 ] 0.06 0.15 0.07 0.07 0.16 0.07 0.07 0.15 0.08 0.07 NO 0.06 NO
27 3 [ 1 1 2 ] 0.10 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 YES 0.12 NO
28 3 [ 3 1 3 ] 0.26 1.10 0.55 0.96 0.10 0.33 0.53 0.18 0.35 0.28 YES TL NO
29 3 [ 1 1 2 ] 0.05 0.15 0.09 0.06 0.15 0.09 0.06 0.15 0.09 0.06 NO 0.05 YES
30 3 [ 1 1 1 ] 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 NO 0.03 YES
31 3 [ 2 2 1 ] 0.53 7.04 0.58 0.55 0.58 0.37 0.57 0.58 0.48 0.60 YES TL YES
32 3 [ 1 1 3 ] 0.11 0.19 0.14 0.15 0.10 0.14 0.14 0.19 0.15 0.15 YES 0.11 YES
33 3 [ 3 2 3 ] 0.07 0.15 0.08 0.08 0.15 0.08 0.08 0.15 0.08 0.08 NO 0.07 TL
34 3 [ 1 2 2 ] 0.42 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 YES 1.03 TL
35 3 [ 2 2 2 ] 0.06 0.14 0.07 0.07 0.14 0.07 0.07 0.14 0.07 0.07 NO 0.06 NO
36 3 [ 1 1 3 ] 0.57 2.69 2.64 6.37 0.67 19.02 3.33 1.68 316.94 0.68 YES TL TL
37 3 [ 2 1 3 ] 0.25 0.20 0.25 0.25 0.34 0.20 0.20 0.35 0.19 0.26 YES 0.15 NO
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Table B.2: Continued. MNE and PNE results for InstanceSetA.
38 3 [ 2 2 2 ] 0.06 0.20 0.10 0.07 0.20 0.10 0.07 0.20 0.10 0.07 NO 0.06 NO
39 3 [ 3 3 1 ] 0.07 0.16 0.08 0.08 0.16 0.08 0.08 0.16 0.08 0.08 NO 0.07 TL
40 3 [ 2 1 2 ] 0.13 0.24 0.18 0.18 0.15 0.17 0.17 0.19 0.17 0.18 YES 0.14 YES
41 3 [ 2 2 3 ] 0.08 0.21 0.14 0.08 0.22 0.14 0.09 0.22 0.14 0.09 NO 0.07 NO
42 3 [ 1 1 1 ] 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 NO 0.03 NO
43 3 [ 1 3 2 ] 1.02 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 YES TL YES
44 3 [ 3 2 2 ] 0.10 0.42 0.18 0.20 0.42 0.18 0.20 0.42 0.18 0.19 NO 0.10 NO
45 3 [ 2 2 1 ] 0.05 0.13 0.06 0.06 0.13 0.06 0.06 0.13 0.06 0.06 NO 0.05 TL
46 3 [ 1 2 2 ] 0.05 0.12 0.06 0.06 0.12 0.06 0.06 0.12 0.06 0.06 NO 0.05 NO
47 3 [ 1 3 2 ] 0.40 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 YES 0.58 NO
48 3 [ 2 2 1 ] 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 NO 0.04 YES
49 3 [ 2 1 1 ] 0.04 0.11 0.07 0.05 0.11 0.07 0.05 0.11 0.07 0.05 NO 0.04 NO
50 4 [ 1 2 1 2 ] 0.18 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 YES 0.17 NO
51 4 [ 1 1 1 1 ] 0.06 0.11 0.07 0.07 0.11 0.07 0.07 0.11 0.07 0.07 NO 0.06 NO
52 4 [ 3 1 3 1 ] 0.10 0.17 0.11 0.11 0.17 0.11 0.11 0.18 0.11 0.11 NO 0.10 NO
53 4 [ 3 1 2 1 ] 775.55 0.36 0.36 0.36 0.36 0.36 0.35 0.36 0.36 0.37 YES TL TL
54 4 [ 1 1 2 3 ] 0.09 0.22 0.10 0.10 0.22 0.10 0.10 0.22 0.10 0.10 NO 0.09 NO
55 4 [ 1 2 1 2 ] 0.14 0.43 0.36 0.36 0.16 0.18 0.18 0.16 0.18 0.36 YES 0.17 NO
56 4 [ 2 2 1 2 ] 1.69 0.20 0.20 0.20 0.20 0.21 0.20 0.20 0.20 0.20 YES TL NO
57 4 [ 1 2 2 2 ] 0.29 0.42 0.28 0.28 0.21 0.31 0.31 0.48 0.45 0.31 YES 0.64 YES
58 4 [ 2 2 2 1 ] 0.09 0.24 0.11 0.11 0.24 0.11 0.11 0.24 0.11 0.11 NO 0.09 YES
59 4 [ 1 2 2 1 ] 0.09 0.22 0.11 0.11 0.23 0.11 0.11 0.22 0.11 0.11 NO 0.09 NO
60 4 [ 1 3 1 3 ] 0.09 0.16 0.11 0.11 0.16 0.11 0.11 0.16 0.11 0.11 NO 0.10 YES
61 4 [ 3 1 3 2 ] 38.83 TL TL 17.70 0.31 2.64 54.99 94.38 1.36 TL YES 152.48 NO
62 4 [ 1 1 3 2 ] 24.30 0.80 0.79 0.79 0.79 0.80 0.80 0.79 0.80 0.80 YES TL NO
63 4 [ 2 3 2 3 ] 0.32 0.70 0.41 0.41 0.24 0.36 0.36 0.47 0.41 0.42 YES 0.25 NO
64 4 [ 2 2 3 1 ] 0.18 0.76 0.32 0.34 0.77 0.32 0.34 0.76 0.32 0.34 NO 0.18 NO
65 4 [ 2 1 3 2 ] 1.32 2.63 2.25 1.89 0.42 1.26 1.27 3.06 1.80 1.64 YES 1.61 NO
66 4 [ 3 3 3 3 ] 0.58 1.34 0.77 0.82 0.37 0.88 0.60 0.66 0.57 0.50 YES 0.44 YES
67 4 [ 3 2 2 1 ] 0.12 0.44 0.22 0.14 0.44 0.22 0.13 0.44 0.22 0.14 NO 0.12 NO
68 4 [ 3 2 2 2 ] 1.90 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 YES TL YES
69 4 [ 2 1 3 3 ] 0.12 0.28 0.13 0.13 0.28 0.13 0.13 0.28 0.13 0.13 NO 0.12 NO
70 4 [ 2 2 2 1 ] 0.08 0.16 0.10 0.10 0.16 0.10 0.10 0.16 0.10 0.10 NO 0.09 YES
71 4 [ 1 2 2 2 ] 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 NO 0.08 YES
72 4 [ 1 2 1 3 ] 0.10 0.32 0.20 0.12 0.33 0.20 0.12 0.33 0.20 0.12 NO 0.10 NO
73 4 [ 2 2 2 2 ] 160.82 12.66 12.80 12.71 12.65 12.81 12.64 12.75 12.83 12.66 YES TL NO
74 4 [ 2 1 1 3 ] 0.16 0.85 0.37 0.28 0.85 0.37 0.28 0.85 0.39 0.28 NO 0.16 NO
75 4 [ 1 2 1 3 ] 0.10 0.24 0.11 0.11 0.24 0.11 0.11 0.24 0.11 0.11 NO 0.10 YES
76 4 [ 1 1 1 2 ] 0.06 0.11 0.07 0.07 0.11 0.07 0.07 0.11 0.07 0.07 NO 0.06 YES
77 4 [ 3 1 2 2 ] 0.14 0.52 0.26 0.16 0.52 0.26 0.16 0.52 0.26 0.16 NO 0.14 NO
78 4 [ 2 1 1 2 ] 0.24 0.34 0.28 0.28 0.21 0.28 0.28 0.21 0.28 0.28 YES 0.25 YES
79 4 [ 3 2 1 3 ] 54.99 297.65 297.34 296.37 4.68 415.64 422.42 35.04 57.32 61.47 YES TL NO
80 4 [ 2 1 1 2 ] 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 NO 0.07 YES
81 4 [ 3 2 2 2 ] 0.19 0.80 0.33 0.36 0.81 0.33 0.37 0.81 0.33 0.37 NO 0.19 YES
82 4 [ 2 3 1 1 ] 0.23 0.64 0.32 0.26 0.17 0.22 0.26 0.23 0.19 0.26 YES 0.40 NO
83 4 [ 2 1 2 2 ] TL 1.50 1.36 TL 8.73 51.28 TL 8.74 76.26 1209.76 YES 0.88 NO
84 4 [ 3 3 1 2 ] 0.26 1.89 0.79 0.66 1.90 0.80 0.66 1.91 0.79 0.66 NO 0.26 NO
85 4 [ 1 1 1 2 ] 0.07 0.12 0.08 0.08 0.12 0.08 0.08 0.12 0.08 0.08 NO 0.07 YES
86 4 [ 1 1 1 3 ] 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.15 YES 0.21 NO
87 4 [ 2 3 1 2 ] 0.42 34.44 34.31 0.46 0.74 0.42 0.44 0.58 TL 0.49 YES TL NO
88 4 [ 1 2 2 1 ] 0.18 0.33 0.22 0.22 0.18 0.21 0.22 0.25 0.21 0.22 YES 0.18 YES
89 4 [ 1 1 2 1 ] 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 NO 0.05 NO
90 4 [ 3 3 2 1 ] 0.47 0.51 0.33 0.33 0.24 0.32 0.31 0.52 0.34 0.32 YES 0.71 NO
91 4 [ 3 1 3 2 ] TL 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 YES TL NO
92 4 [ 3 3 2 3 ] 0.46 0.92 0.73 0.86 0.23 0.57 0.48 0.46 0.36 0.40 YES 1.00 YES
93 4 [ 2 2 2 2 ] 0.41 0.66 0.51 0.40 0.60 0.44 0.46 0.70 0.85 0.43 YES 0.32 NO
94 4 [ 2 2 3 2 ] 1.00 3.28 2.03 2.86 0.44 1.74 1.23 3.31 57.72 2.65 YES 15.24 NO
95 4 [ 1 1 2 2 ] 0.08 0.20 0.09 0.09 0.20 0.09 0.09 0.20 0.09 0.09 NO 0.08 YES
96 4 [ 1 2 1 1 ] 0.06 0.11 0.07 0.07 0.11 0.07 0.07 0.11 0.07 0.07 NO 0.06 YES
97 4 [ 2 2 2 2 ] 0.22 0.32 0.26 0.26 0.22 0.25 0.25 0.32 0.25 0.26 YES 0.22 NO
98 4 [ 1 1 2 1 ] 0.27 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 YES 98.14 NO
99 4 [ 2 2 2 2 ] 0.17 0.63 0.32 0.19 0.64 0.32 0.19 0.64 0.32 0.19 NO 0.17 YES
100 5 [ 2 2 2 1 1 ] 0.15 0.38 0.17 0.16 0.39 0.16 0.17 0.38 0.17 0.17 NO 0.15 NO
101 5 [ 2 3 3 2 2 ] TL TL TL TL 1.82 TL TL TL TL TL YES TL YES
102 5 [ 2 2 2 3 3 ] 4.45 2.36 1.14 1.36 4.71 2.84 41.97 51.47 1.35 3.76 YES TL YES
103 5 [ 1 2 3 1 2 ] 1.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 YES TL YES
104 5 [ 1 3 1 1 1 ] 0.37 0.31 0.33 0.33 0.42 0.31 0.31 0.60 0.31 0.33 YES 0.23 NO
105 5 [ 2 3 2 2 1 ] 0.32 1.76 0.77 0.58 1.78 0.77 0.58 1.78 0.77 0.58 NO 0.32 NO
106 5 [ 2 2 1 2 2 ] 0.19 0.48 0.21 0.21 0.48 0.20 0.20 0.48 0.20 0.20 NO 0.19 NO
107 5 [ 1 2 3 2 1 ] 0.21 0.81 0.38 0.23 0.83 0.38 0.23 0.83 0.38 0.23 NO 0.21 NO
108 5 [ 3 2 2 1 1 ] 0.14 0.35 0.17 0.16 0.35 0.17 0.16 0.36 0.16 0.17 NO 0.15 YES
109 5 [ 2 2 2 3 1 ] 582.94 2.12 2.09 2.11 2.11 2.12 2.11 2.10 2.11 2.10 YES TL YES
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Table B.2: Continued. MNE and PNE results for InstanceSetA.
110 5 [ 3 2 2 3 3 ] 0.29 0.67 0.33 0.32 0.69 0.32 0.32 0.67 0.32 0.32 NO 0.30 YES
111 5 [ 2 1 3 1 3 ] 0.21 0.66 0.41 0.23 0.66 0.41 0.23 0.66 0.41 0.23 NO 0.21 NO
112 5 [ 1 2 1 3 2 ] 0.49 0.74 0.46 0.50 0.32 0.43 0.51 0.75 0.43 0.52 YES 1.11 YES
113 5 [ 1 1 2 1 1 ] 0.34 0.76 0.38 0.38 0.25 0.38 0.38 0.51 0.38 0.38 YES 0.53 YES
114 5 [ 1 3 3 1 1 ] 0.21 0.53 0.23 0.23 0.53 0.23 0.23 0.53 0.23 0.23 NO 0.22 NO
115 5 [ 3 1 2 3 2 ] 0.24 0.59 0.26 0.26 0.59 0.26 0.26 0.59 0.26 0.27 NO 0.24 YES
116 5 [ 1 2 2 3 2 ] 0.16 0.30 0.18 0.18 0.30 0.18 0.18 0.30 0.18 0.18 NO 0.16 NO
117 5 [ 2 2 1 2 2 ] 6.07 20.36 5.18 5.01 1.09 1.79 2.81 0.34 27.81 3.09 YES 4.20 NO
118 5 [ 2 2 2 2 2 ] 0.20 0.47 0.22 0.22 0.48 0.22 0.22 0.48 0.22 0.22 NO 0.20 NO
119 5 [ 3 3 2 1 1 ] 1.61 2.03 25.49 6.88 0.68 1.86 1.34 12.00 3.35 47.53 YES TL NO
120 5 [ 3 2 1 2 2 ] 0.19 0.50 0.22 0.21 0.50 0.22 0.22 0.49 0.22 0.22 NO 0.20 NO
121 5 [ 1 2 1 2 1 ] 0.14 0.35 0.16 0.15 0.36 0.15 0.16 0.36 0.16 0.15 NO 0.13 YES
122 5 [ 1 2 2 2 3 ] 0.20 0.51 0.23 0.23 0.51 0.23 0.23 0.52 0.23 0.23 NO 0.21 NO
123 5 [ 2 2 2 3 2 ] 0.21 0.53 0.23 0.23 0.53 0.23 0.23 0.53 0.23 0.24 NO 0.21 NO
124 5 [ 1 1 2 1 3 ] 2.10 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 YES TL NO
125 5 [ 2 3 2 1 2 ] 2.12 0.50 0.51 0.50 0.49 0.50 0.50 0.50 0.51 0.51 YES TL NO
126 5 [ 2 2 2 2 2 ] 0.95 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.48 0.48 YES TL YES
127 5 [ 2 1 2 1 2 ] 0.30 0.52 0.33 0.33 0.22 0.30 0.30 0.51 0.29 0.33 YES 0.23 YES
128 5 [ 2 1 2 2 3 ] TL 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 YES TL YES
129 5 [ 2 2 3 3 3 ] TL TL TL TL 204.95 TL TL TL TL 83.46 YES TL NO
130 5 [ 3 2 1 2 2 ] TL TL TL TL 65.01 TL TL 74.42 TL TL YES TL NO
131 5 [ 2 1 2 2 1 ] 0.21 0.68 0.40 0.23 0.68 0.41 0.23 0.68 0.41 0.23 NO 0.21 YES
132 5 [ 2 2 1 1 2 ] 0.19 0.48 0.21 0.21 0.48 0.21 0.21 0.48 0.21 0.21 NO 0.19 TL
133 5 [ 2 2 2 2 3 ] TL 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 YES TL NO
134 5 [ 2 2 1 2 2 ] 5.16 1.04 0.75 1.12 0.72 170.73 TL 0.72 TL TL YES 0.87 NO
135 5 [ 2 2 1 2 1 ] 0.14 0.36 0.16 0.16 0.36 0.16 0.16 0.36 0.16 0.16 NO 0.14 YES
136 5 [ 2 2 1 3 2 ] 0.24 0.94 0.45 0.26 0.94 0.45 0.26 0.94 0.45 0.26 NO 0.24 YES
137 5 [ 2 2 2 2 1 ] 0.40 0.88 0.61 0.61 0.35 0.48 0.47 0.65 0.45 0.45 YES 0.29 YES
138 5 [ 2 2 2 2 1 ] 0.26 1.37 0.69 0.49 1.38 0.69 0.49 1.37 0.69 0.49 NO 0.27 NO
139 5 [ 3 2 1 2 3 ] TL 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 YES TL NO
140 5 [ 2 2 1 1 2 ] 0.11 0.21 0.13 0.13 0.21 0.13 0.13 0.22 0.13 0.13 NO 0.11 YES
141 5 [ 1 2 1 2 1 ] 0.62 0.94 1.13 0.67 0.33 0.58 0.71 0.72 0.95 0.99 YES 1.15 TL
142 5 [ 2 1 2 2 1 ] 0.21 0.83 0.39 0.23 0.84 0.39 0.22 0.83 0.39 0.22 NO 0.21 YES
143 5 [ 1 2 1 2 2 ] 0.19 0.46 0.20 0.21 0.46 0.20 0.20 0.46 0.20 0.20 NO 0.19 YES
144 5 [ 1 3 1 2 2 ] 0.17 0.31 0.19 0.19 0.31 0.19 0.19 0.31 0.19 0.19 NO 0.17 YES
145 5 [ 1 2 2 2 1 ] 0.16 0.42 0.18 0.18 0.42 0.18 0.18 0.42 0.18 0.18 NO 0.17 NO
146 5 [ 3 2 2 1 2 ] TL 3.17 688.67 20.60 203.07 TL TL 2.27 TL 21.66 YES TL NO
147 5 [ 1 1 2 2 3 ] 0.16 0.29 0.18 0.18 0.30 0.18 0.18 0.30 0.18 0.18 NO 0.16 YES
148 5 [ 2 2 2 2 3 ] 0.25 0.62 0.28 0.27 0.62 0.27 0.28 0.62 0.27 0.27 NO 0.25 YES
149 5 [ 2 1 1 2 2 ] 0.13 0.35 0.15 0.15 0.35 0.15 0.15 0.35 0.15 0.15 NO 0.13 NO

Table B.3: MNE and PNE results for InstanceSetB. Same notation as Table B.2.

# L F FE seq seq3 seq5 rseq1 rseq3 rseq5 rand1 rand3 rand5 MNE FE-P PNE

0 7 [ 1 1 2 2 2 2 2 ] TL TL TL TL TL 8.86 TL 240.99 TL TL YES TL TL
1 7 [ 1 1 1 2 1 2 1 ] 62.12 2.82 1.93 102.97 1.64 6.91 279.06 1.87 5.98 83.84 YES TL TL
2 7 [ 2 3 2 1 3 2 2 ] TL 6.28 6.29 6.32 6.43 6.42 6.35 6.28 6.35 6.32 YES TL TL
3 7 [ 1 2 2 1 1 3 1 ] 572.69 0.51 0.50 0.50 0.51 0.50 0.50 0.50 0.50 0.50 YES TL TL
4 7 [ 1 3 2 2 1 2 1 ] TL 1.34 1.33 1.33 1.33 1.35 1.32 1.33 1.35 1.32 YES TL TL
5 7 [ 2 1 2 2 1 2 2 ] 192.37 0.28 0.27 0.28 0.28 0.28 0.27 0.27 0.27 0.27 YES 2.40 YES
6 7 [ 2 2 2 3 3 2 1 ] TL TL TL TL 20.02 TL TL TL TL TL YES TL TL
7 7 [ 2 2 1 1 3 2 3 ] TL TL TL TL 464.21 TL TL TL TL TL YES TL TL
8 7 [ 3 3 1 1 3 3 3 ] TL 0.38 0.38 0.39 0.38 0.38 0.39 0.38 0.39 0.39 YES TL TL
9 7 [ 2 1 2 2 2 1 2 ] TL 2.45 2.46 2.45 2.43 2.47 2.46 2.47 2.46 2.46 YES TL TL

10 7 [ 2 3 2 2 1 2 2 ] TL TL TL TL 1704.42 TL TL TL TL TL YES TL TL
11 7 [ 1 2 3 1 3 2 1 ] TL TL 418.96 TL 2.81 8.91 TL 4.17 TL TL YES TL TL
12 7 [ 3 2 2 1 2 1 1 ] 9.29 3.67 2.70 8.17 1.38 4.59 TL 4.86 9.14 3.90 YES TL TL
13 7 [ 2 3 3 1 1 1 2 ] TL 251.78 250.48 64.79 687.63 TL 22.45 TL 21.43 31.46 YES 15.66 YES
14 7 [ 3 2 2 2 2 2 2 ] TL TL TL TL 234.33 TL TL 480.56 TL TL YES TL TL
15 7 [ 2 2 3 2 2 2 1 ] 10.65 2.09 1.12 16.33 0.69 19.91 4.13 5.11 5.25 18.68 YES 2.24 YES
16 7 [ 2 2 2 2 1 2 2 ] TL 162.89 162.19 TL 14.14 51.75 TL 82.21 975.49 TL YES TL TL
17 7 [ 3 3 1 3 2 2 1 ] 635.27 TL TL TL 1.81 TL TL 6.88 92.29 TL YES TL TL
18 7 [ 1 1 2 2 2 2 2 ] TL TL TL TL TL 8.79 TL TL 10.92 269.57 YES TL TL
19 7 [ 2 1 1 3 2 3 2 ] 0.97 8.99 3.57 2.28 9.00 3.57 2.30 8.96 3.59 2.30 NO 0.97 NO
20 7 [ 2 2 3 2 2 2 1 ] 10.77 2.12 1.12 16.32 0.70 20.15 4.08 2.56 4.72 5.82 YES 2.24 YES
21 7 [ 3 2 2 2 2 2 2 ] TL TL TL TL 231.01 TL TL TL TL TL YES TL TL
22 7 [ 2 1 1 2 3 1 3 ] 1.27 10.29 4.19 3.39 10.33 4.16 3.40 10.35 4.16 3.41 NO 1.26 NO
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Table B.3: Continued. MNE and PNE results for InstanceSetB.
23 7 [ 2 3 3 1 1 1 2 ] TL 247.80 248.01 64.28 674.37 TL 22.26 TL 56.89 TL YES 15.73 YES
24 7 [ 1 1 2 2 2 2 2 ] TL TL TL TL TL 8.85 TL 40.14 TL 72.52 YES TL TL
25 7 [ 3 3 1 3 2 2 1 ] 634.30 TL TL TL 1.82 TL TL 21.92 47.97 TL YES TL TL
26 7 [ 2 2 2 2 1 2 2 ] TL 163.13 162.77 TL 14.13 51.84 TL 4.82 49.23 TL YES TL TL
27 7 [ 2 2 3 2 2 2 1 ] 10.80 2.10 1.12 16.50 0.70 20.20 4.11 1.32 3.96 29.07 YES 2.25 YES
28 7 [ 3 2 2 2 2 2 2 ] TL TL TL TL 232.56 TL TL TL TL TL YES TL TL
29 7 [ 2 3 3 1 1 1 2 ] TL 251.41 250.92 64.24 687.38 TL 22.52 TL 26.55 2.11 YES 15.83 YES
30 7 [ 3 2 2 1 2 1 1 ] 9.32 3.63 2.71 8.17 1.37 4.62 TL 3.86 TL 2.77 YES TL TL
31 7 [ 1 2 3 1 3 2 1 ] TL TL 419.48 TL 2.80 8.88 TL 3.55 1403.19 TL YES TL TL
32 7 [ 2 3 2 2 1 2 2 ] TL TL TL TL 1687.53 TL TL TL TL TL YES TL TL
33 7 [ 2 1 2 2 2 1 2 ] TL 2.46 2.46 2.45 2.46 2.46 2.43 2.44 2.47 2.43 YES TL TL
34 7 [ 3 3 1 1 3 3 3 ] TL 0.38 0.39 0.38 0.39 0.38 0.38 0.38 0.38 0.38 YES TL TL
35 7 [ 2 2 1 1 3 2 3 ] TL TL TL TL 458.72 TL TL TL TL TL YES TL TL
36 7 [ 2 2 2 3 3 2 1 ] TL TL TL TL 20.15 TL TL TL TL TL YES TL TL
37 7 [ 2 1 2 2 1 2 2 ] 194.28 0.27 0.28 0.28 0.29 0.28 0.27 0.28 0.28 0.28 YES 2.49 YES
38 7 [ 1 3 2 2 1 2 1 ] TL 1.32 1.32 1.33 1.32 1.33 1.33 1.32 1.33 1.33 YES TL TL
39 7 [ 1 2 2 1 1 3 1 ] 572.42 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 YES TL TL
40 7 [ 2 3 2 1 3 2 2 ] TL 6.31 6.36 6.31 6.34 6.32 6.30 6.36 6.32 6.31 YES TL TL
41 7 [ 1 1 1 2 1 2 1 ] 62.55 2.79 1.92 103.28 1.61 6.88 281.18 8.29 23.78 TL YES TL TL
42 7 [ 1 2 3 3 2 1 3 ] TL 4.96 4.99 4.94 4.98 5.00 4.95 4.95 4.94 4.97 YES TL TL
43 7 [ 2 2 2 2 2 2 1 ] TL 9.47 9.58 9.50 9.48 9.59 9.51 9.53 9.55 9.56 YES TL TL
44 7 [ 3 1 1 2 2 2 2 ] 328.72 23.73 22.80 151.03 36.63 36.91 1190.55 11.59 168.20 4.98 YES TL TL
45 7 [ 2 2 2 3 1 2 2 ] 62.39 0.12 0.13 0.12 0.12 0.12 0.12 0.13 0.13 0.12 YES TL TL
46 7 [ 2 1 2 2 2 3 2 ] TL TL TL TL 357.43 TL TL TL TL TL YES TL TL
47 7 [ 2 2 2 1 1 3 2 ] 1131.25 1.67 1.69 1.66 1.67 1.66 1.66 1.69 1.66 1.66 YES TL TL
48 7 [ 1 2 2 2 2 3 2 ] 72.68 19.09 18.06 18.08 130.47 136.21 136.37 47.97 173.22 113.87 YES TL TL
49 7 [ 2 2 2 1 2 3 3 ] 113.30 TL TL TL 4.85 TL 115.96 413.01 1065.67 689.10 YES TL TL
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Table B.4: Instances’ solutions for InstanceSetInsights. The columns are, in order of appearance: the instance’s number, the
boolean tax switch (Ta) and the trade switch (Tr). Then, the set of results associated with each of the two countries (Country
One, and Country Two). In particular: the unit-energy production level Prod, the domestic price per unit-energy $(E), the
import Imp and export Exp unit-energies, the export price $(E), and the tax per unit-emission Tax. Furthermore, for each of the
the 3 followers of each country, we have the type Ty (C for coal, G for gas, or S for solar), the associated emission cost per
unit-energy E, and its production Prod.

Country One Country Two
Follower 1 Follower 2 Follower 3 Follower 1 Follower 2 Follower 3

# Ta Tr Prod $ (D) Imp Exp $ (E) Tax Ty E Prod T E Prod Ty E Prod Prod $ (D) Imp Exp $ (E) Tax Ty E Prod T E Prod Ty E Prod
I_0 0 0 83,33 300,00 0,00 0,00 - 80,00 C 500 0,00 G 200 41,67 S 25 41,67 60,00 255,00 0,00 0,00 - 0,30 C 500 27,76 G 100 27,76 S 50 4,48
I_0 0 1 98,81 300,00 0,56 16,03 279,43 80,00 C 500 0,00 G 200 57,14 S 25 41,67 44,52 255,00 16,03 0,56 278,43 9,35 C 500 20,52 G 100 20,52 S 50 3,49
I_0 1 0 83,33 300,00 0,00 0,00 - 0,14 C 500 7,35 G 200 37,22 S 25 38,76 60,00 255,00 0,00 0,00 - 0,00 C 500 27,42 G 100 27,88 S 50 4,69
I_0 1 1 119,32 300,00 0,00 35,99 103255,86 0,07 C 500 32,02 G 200 47,10 S 25 40,20 24,01 255,00 35,99 0,00 103256,86 0,07 C 500 0,14 G 100 22,43 S 50 1,45
I_1 0 0 37,50 270,00 0,00 0,00 - 11,41 C 300 29,69 G 100 7,81 S 50 0,00 50,00 315,00 0,00 0,00 - 15,77 G 100 26,92 S 50 11,54 S 25 11,54
I_1 0 1 0,00 270,00 46,59 9,09 63,54 50,00 C 300 0,00 G 100 0,00 S 50 0,00 87,50 315,00 9,09 46,59 62,54 7,27 G 100 36,36 S 50 25,57 S 25 25,57
I_1 1 0 37,50 270,00 0,00 0,00 - 0,06 C 300 24,73 G 100 12,77 S 50 0,00 50,00 315,00 0,00 0,00 - 0,28 G 100 13,56 S 50 13,88 S 25 22,56
I_1 1 1 3,83 270,00 33,67 0,00 5498,03 0,16 C 300 0,57 G 100 3,26 S 50 0,00 83,67 315,00 0,00 33,67 5497,03 0,11 G 100 31,82 S 50 24,15 S 25 27,70
I_2 0 0 30,56 247,50 0,00 0,00 - 15,56 C 300 22,03 G 100 8,53 S 25 0,00 97,50 276,25 0,00 0,00 - 20,04 C 500 53,53 G 200 36,21 S 50 7,76
I_2 0 1 52,40 247,50 30,03 51,88 304,10 0,00 C 300 32,76 G 100 19,64 S 25 0,00 75,65 276,25 51,88 30,03 303,10 40,57 C 500 33,98 G 200 26,32 S 50 15,35
I_2 1 0 30,56 247,50 0,00 0,00 - 0,08 C 300 16,52 G 100 14,04 S 25 0,00 97,50 276,25 0,00 0,00 - 0,09 C 500 31,24 G 200 38,87 S 50 27,38
I_2 1 1 52,40 247,50 0,00 21,85 161540,06 0,00 C 300 32,76 G 100 19,64 S 25 0,00 75,65 276,25 21,85 0,00 161541,06 0,12 C 500 17,16 G 200 32,96 S 50 25,53
I_3 0 0 84,37 382,50 0,00 0,00 - 116,88 C 500 35,09 G 200 35,09 S 25 14,20 30,56 247,50 0,00 0,00 - 32,73 S 25 10,19 S 50 10,19 S 50 10,19
I_3 0 1 16,65 382,50 79,62 11,90 178,85 153,34 C 500 2,82 G 200 7,05 S 25 6,79 98,28 247,50 11,90 79,62 179,85 0,00 S 25 32,76 S 50 32,76 S 50 32,76
I_3 1 0 134,71 342,23 0,00 0,00 - 0,24 C 500 0,00 G 200 56,42 S 25 78,29 54,22 226,20 0,00 0,00 - 0,00 S 25 18,07 S 50 18,07 S 50 18,07
I_3 1 1 178,28 374,04 14,96 98,30 64,87 0,31 C 500 0,00 G 200 71,10 S 25 107,18 0,00 200,00 98,30 14,96 65,87 0,00 S 25 0,00 S 50 0,00 S 50 0,00
I_4 0 0 108,43 277,41 0,00 0,00 - 25,00 S 25 36,14 S 50 36,14 S 50 36,14 93,75 318,75 0,00 0,00 - 0,29 G 200 11,68 S 50 36,49 S 25 45,59
I_4 0 1 151,64 298,29 0,00 66,41 27,11 25,00 S 25 50,55 S 50 50,55 S 50 50,55 27,34 318,75 66,41 0,00 28,11 0,88 G 200 0,00 S 50 0,00 S 25 27,34
I_4 1 0 93,55 290,80 0,00 0,00 - 1,09 S 25 43,76 S 50 24,90 S 50 24,90 93,75 318,75 0,00 0,00 - 0,29 G 200 11,68 S 50 36,49 S 25 45,59
I_4 1 1 101,42 298,44 0,00 16,36 159,09 1,19 S 25 47,44 S 50 26,99 S 50 26,99 77,39 318,75 16,36 0,00 160,09 0,34 G 200 0,17 S 50 33,25 S 25 43,97
I_5 0 0 112,50 318,75 0,00 0,00 - 110,96 C 300 52,54 G 200 52,54 S 25 7,42 80,00 240,00 0,00 0,00 - 300,00 C 500 0,00 G 200 49,23 G 200 30,77
I_5 0 1 192,50 318,75 60,93 140,93 188,86 91,39 C 300 70,33 G 200 70,33 S 25 51,85 0,00 240,00 140,93 60,93 189,86 90,00 C 500 0,00 G 200 0,00 G 200 0,00
I_5 1 0 136,64 306,68 0,00 0,00 - 0,52 C 300 0,00 G 200 47,48 S 25 89,16 80,00 240,00 0,00 0,00 - 0,13 C 500 20,34 G 200 48,14 G 200 11,53
I_5 1 1 150,84 318,75 0,00 38,34 116,22 0,56 C 300 0,00 G 200 51,14 S 25 99,70 41,66 240,00 38,34 0,00 117,22 0,18 C 500 0,00 G 200 39,31 G 200 2,36
I_6 0 0 56,25 255,00 0,00 0,00 - 0,00 C 500 25,30 G 100 26,60 S 50 4,35 81,25 276,25 0,00 0,00 - 9,01 G 200 42,94 S 50 19,15 S 50 19,15
I_6 0 1 28,03 255,00 28,22 0,00 398,97 0,06 C 500 3,89 G 100 22,32 S 50 1,82 109,47 276,25 0,00 28,22 397,97 0,00 G 200 51,14 S 50 29,17 S 50 29,17
I_6 1 0 56,25 255,00 0,00 0,00 - 0,00 C 500 25,30 G 100 26,60 S 50 4,35 81,25 276,25 0,00 0,00 - 0,10 G 200 33,62 S 50 23,81 S 50 23,81
I_6 1 1 28,03 255,00 28,22 0,00 190054,14 0,06 C 500 3,89 G 100 22,32 S 50 1,82 109,47 276,25 0,00 28,22 190053,14 0,00 G 200 51,14 S 50 29,17 S 50 29,17
I_7 0 0 58,33 297,50 0,00 0,00 - 103,75 C 300 29,17 G 100 29,17 S 25 0,00 56,52 399,13 0,00 0,00 - 199,13 C 500 0,00 G 100 0,00 G 200 56,52
I_7 0 1 0,00 297,50 58,33 0,00 99,00 147,50 C 300 0,00 G 100 0,00 S 25 0,00 108,33 405,00 0,00 58,33 100,00 205,00 C 500 0,00 G 100 47,62 G 200 60,71
I_7 1 0 91,94 267,25 0,00 0,00 - 0,39 C 300 0,13 G 100 52,16 S 25 39,65 122,61 339,65 0,00 0,00 - 0,28 C 500 0,00 G 100 77,05 G 200 45,56
I_7 1 1 124,56 297,50 0,00 66,22 114,18 0,49 C 300 0,17 G 100 65,61 S 25 58,78 91,57 307,98 66,22 0,00 115,18 0,22 C 500 0,00 G 100 59,58 G 200 31,99
I_8 0 0 150,00 360,00 0,00 0,00 - 2,46 S 50 32,17 S 25 85,65 S 50 32,17 60,94 276,25 0,00 0,00 - 58,91 C 500 48,10 G 200 12,84 S 50 0,00
I_8 0 1 210,94 360,00 0,00 60,94 45,00 1,90 S 50 56,55 S 25 97,84 S 50 56,55 0,00 276,25 60,94 0,00 46,00 126,25 C 500 0,00 G 200 0,00 S 50 0,00
I_8 1 0 150,00 360,00 0,00 0,00 - 2,46 S 50 32,17 S 25 85,65 S 50 32,17 60,94 276,25 0,00 0,00 - 0,24 C 500 5,46 G 200 21,34 S 50 34,15
I_8 1 1 157,50 360,00 0,00 7,50 1045,00 2,39 S 50 35,18 S 25 87,15 S 50 35,18 53,43 276,25 7,50 0,00 1046,00 0,25 C 500 0,53 G 200 19,29 S 50 33,61
I_9 0 0 150,00 360,00 0,00 0,00 - 2,30 C 300 0,00 S 25 75,00 S 25 75,00 93,33 280,00 0,00 0,00 - 0,47 G 100 25,47 S 25 38,62 S 50 29,24
I_9 0 1 219,33 360,00 0,00 69,33 25,00 0,77 C 300 0,00 S 25 109,67 S 25 109,67 24,00 280,00 69,33 0,00 26,00 1,20 G 100 0,00 S 25 24,00 S 50 0,00
I_9 1 0 190,15 335,91 0,00 0,00 - 0,45 C 300 0,00 S 25 95,08 S 25 95,08 100,45 274,66 0,00 0,00 - 0,32 G 100 32,46 S 25 37,24 S 50 30,75
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Table B.4: Continued. Instances’ solutions for InstanceSetInsights
I_9 1 1 230,47 360,00 9,15 89,62 3239,81 0,53 C 300 0,14 S 25 115,16 S 25 115,16 60,66 244,15 89,62 9,15 3238,81 0,19 G 100 19,20 S 25 22,65 S 50 18,81
I_10 0 0 69,57 283,26 0,00 0,00 - 83,26 G 100 0,00 S 25 34,78 S 50 34,78 37,50 270,00 0,00 0,00 - 11,41 C 300 29,69 G 100 7,81 S 50 0,00
I_10 0 1 91,67 292,50 0,00 37,50 25,00 92,50 G 100 0,00 S 25 48,48 S 50 43,18 -0,00 270,00 37,50 0,00 26,00 50,00 C 300 -0,00 G 100 0,00 S 50 0,00
I_10 1 0 67,09 284,75 0,00 0,00 - 0,80 G 100 4,01 S 25 40,65 S 50 22,43 37,50 270,00 0,00 0,00 - 0,06 C 300 24,73 G 100 12,77 S 50 0,00
I_10 1 1 87,84 292,50 0,00 33,67 11284,55 0,80 G 100 10,70 S 25 47,68 S 50 29,46 3,83 270,00 33,67 0,00 11285,55 0,16 C 300 0,57 G 100 3,26 S 50 0,00
I_11 0 0 125,76 286,97 0,00 0,00 - 25,00 S 50 34,97 S 50 34,97 S 25 55,81 75,00 337,50 0,00 0,00 - 0,58 C 500 0,00 G 200 1,79 S 50 73,21
I_11 0 1 173,48 306,06 0,00 75,00 26,52 25,00 S 50 50,88 S 50 50,88 S 25 71,72 -0,00 337,50 75,00 0,00 27,52 1,75 C 500 0,00 G 200 0,00 S 50 -0,00
I_11 1 0 138,74 277,88 0,00 0,00 - 0,06 S 50 45,85 S 50 45,85 S 25 47,04 123,42 313,29 0,00 0,00 - 0,19 C 500 0,00 G 200 55,97 S 50 67,45
I_11 1 1 82,23 254,31 90,19 0,00 284,84 0,03 S 50 27,17 S 50 27,17 S 25 27,88 165,19 337,50 0,00 90,19 283,84 0,24 C 500 0,00 G 200 70,50 S 50 94,69
I_12 0 0 97,50 276,25 0,00 0,00 - 0,06 C 500 28,12 G 100 50,63 G 200 18,75 150,00 300,00 0,00 0,00 - 8,57 C 300 51,79 G 100 62,50 S 25 35,71
I_12 0 1 86,79 276,25 10,71 0,00 364,71 0,07 C 500 21,82 G 100 49,36 G 200 15,60 160,71 300,00 0,00 10,71 363,71 0,00 C 300 62,50 G 100 62,50 S 25 35,71
I_12 1 0 97,50 276,25 0,00 0,00 - 0,06 C 500 28,12 G 100 50,63 G 200 18,75 150,00 300,00 0,00 0,00 - 0,02 C 300 55,00 G 100 60,00 S 25 35,00
I_12 1 1 86,79 276,25 10,71 0,00 88598,00 0,07 C 500 21,82 G 100 49,36 G 200 15,60 160,71 300,00 0,00 10,71 88599,00 0,00 C 300 62,50 G 100 62,50 S 25 35,71
I_13 0 0 135,00 382,50 0,00 0,00 - 0,72 C 300 16,22 G 200 81,27 G 200 37,52 38,89 315,00 0,00 0,00 - 135,83 C 500 19,44 G 200 19,44 G 100 0,00
I_13 0 1 173,89 382,50 31,08 69,97 231,74 0,63 C 300 24,66 G 200 95,03 G 200 54,20 0,00 315,00 69,97 31,08 232,74 165,00 C 500 0,00 G 200 0,00 G 100 0,00
I_13 1 0 135,00 382,50 0,00 0,00 - 0,72 C 300 16,22 G 200 81,27 G 200 37,52 83,95 274,44 0,00 0,00 - 0,25 C 500 0,00 G 200 49,78 G 100 34,18
I_13 1 1 96,65 382,50 71,27 32,92 169,07 0,78 C 300 0,00 G 200 70,45 G 200 26,19 104,40 290,56 32,92 71,27 168,07 0,28 C 500 0,00 G 200 56,22 G 100 48,18
I_14 0 0 90,00 382,50 0,00 0,00 - 2,87 S 50 30,00 S 50 30,00 S 50 30,00 60,00 255,00 0,00 0,00 - 6,57 C 500 37,25 G 100 22,75 S 50 0,00
I_14 0 1 150,00 382,50 0,00 60,00 50,00 2,35 S 50 50,00 S 50 50,00 S 50 50,00 0,00 255,00 60,00 0,00 51,00 55,00 C 500 0,00 G 100 0,00 S 50 0,00
I_14 1 0 207,61 294,29 0,00 0,00 - 0,09 S 50 69,20 S 50 69,20 S 50 69,20 60,00 255,00 0,00 0,00 - 0,03 C 500 30,99 G 100 25,65 S 50 3,36
I_14 1 1 233,02 305,83 0,00 40,80 290,66 0,10 S 50 77,67 S 50 77,67 S 50 77,67 19,20 255,00 40,80 0,00 291,66 0,11 C 500 0,00 G 100 19,20 S 50 0,00
I_15 0 0 60,00 405,00 0,00 0,00 - 118,16 C 300 35,08 S 50 12,46 S 50 12,46 40,00 268,00 0,00 0,00 - 50,00 S 50 13,33 S 50 13,33 S 50 13,33
I_15 0 1 0,00 405,00 60,00 0,00 51,00 155,00 C 300 0,00 S 50 0,00 S 50 0,00 97,50 270,00 0,00 60,00 50,00 26,13 S 50 32,50 S 50 32,50 S 50 32,50
I_15 1 0 128,79 353,41 0,00 0,00 - 0,34 C 300 0,00 S 50 64,39 S 50 64,39 77,42 238,06 0,00 0,00 - 0,06 S 50 25,81 S 50 25,81 S 50 25,81
I_15 1 1 201,64 392,52 21,47 146,47 60,88 0,48 C 300 0,00 S 50 100,82 S 50 100,82 0,00 200,00 146,47 21,47 61,88 0,00 S 50 0,00 S 50 0,00 S 50 0,00
I_16 0 0 60,00 270,00 0,00 0,00 - 0,10 S 50 19,00 S 50 19,00 S 25 22,00 128,57 360,00 0,00 0,00 - 110,00 C 500 0,00 G 100 34,13 S 50 94,44
I_16 0 1 75,00 270,00 0,00 15,00 99,00 0,00 S 50 25,00 S 50 25,00 S 25 25,00 113,57 360,00 15,00 0,00 98,00 110,00 C 500 0,00 G 100 19,13 S 50 94,44
I_16 1 0 60,00 270,00 0,00 0,00 - 0,10 S 50 19,00 S 50 19,00 S 25 22,00 147,24 346,93 0,00 0,00 - 0,19 C 500 0,41 G 100 77,63 S 50 69,20
I_16 1 1 17,75 270,00 42,25 0,00 543,00 0,37 S 50 2,10 S 50 2,10 S 25 13,55 170,83 360,00 0,00 42,25 544,00 0,22 C 500 0,46 G 100 88,09 S 50 82,27
I_17 0 0 112,50 318,75 0,00 0,00 - 9,63 C 500 48,75 S 25 31,88 S 25 31,88 43,75 315,00 0,00 0,00 - 0,38 C 300 0,53 G 200 28,75 G 200 14,47
I_17 0 1 113,75 318,75 31,68 32,93 211,08 12,32 C 500 44,90 S 25 34,43 S 25 34,43 42,50 315,00 32,93 31,68 212,08 0,38 C 300 0,00 G 200 28,40 G 200 14,10
I_17 1 0 112,50 318,75 0,00 0,00 - 0,06 C 500 21,46 S 25 45,52 S 25 45,52 43,75 315,00 0,00 0,00 - 0,38 C 300 0,53 G 200 28,75 G 200 14,47
I_17 1 1 88,87 318,75 23,63 0,00 38393,57 0,09 C 500 0,29 S 25 44,29 S 25 44,29 67,38 315,00 0,00 23,63 38394,57 0,34 C 300 10,55 G 200 35,43 G 200 21,41
I_18 0 0 50,00 337,50 0,00 0,00 - 1,03 G 100 0,00 S 50 11,40 S 25 38,60 150,00 360,00 0,00 0,00 - 85,00 C 300 0,00 G 200 106,25 G 200 43,75
I_18 0 1 200,00 337,50 0,00 150,00 73,56 0,09 G 100 75,18 S 50 61,28 S 25 63,54 0,00 360,00 150,00 0,00 72,56 85,00 C 300 0,00 G 200 0,00 G 200 0,00
I_18 1 0 84,10 311,93 0,00 0,00 - 0,30 G 100 30,21 S 50 22,97 S 25 30,92 150,00 360,00 0,00 0,00 - 0,18 C 300 39,34 G 200 61,64 G 200 49,02
I_18 1 1 140,56 337,50 0,00 90,56 6225,32 0,43 G 100 42,68 S 50 43,32 S 25 54,56 79,91 347,71 90,56 0,00 6226,32 0,21 C 300 13,72 G 200 39,44 G 200 26,75
I_19 0 0 64,29 405,00 0,00 0,00 - 2,21 S 50 21,43 S 50 21,43 S 50 21,43 60,00 270,00 0,00 0,00 - 0,26 C 500 0,00 G 200 16,57 S 25 43,43
I_19 0 1 83,04 405,00 0,00 18,75 50,00 2,10 S 50 27,68 S 50 27,68 S 50 27,68 41,25 270,00 18,75 0,00 51,00 0,35 C 500 0,00 G 200 0,00 S 25 41,25
I_19 1 0 64,29 405,00 0,00 0,00 - 2,21 S 50 21,43 S 50 21,43 S 50 21,43 78,74 260,63 0,00 0,00 - 0,11 C 500 4,47 G 200 36,43 S 25 37,83
I_19 1 1 150,00 405,00 16,61 102,32 5570,48 1,70 S 50 50,00 S 50 50,00 S 50 50,00 45,91 234,19 102,32 16,61 5569,48 0,06 C 500 2,52 G 200 20,54 S 25 22,84
I_20 0 0 48,65 331,22 0,00 0,00 - 25,00 S 25 16,22 S 25 16,22 S 50 16,22 107,14 300,00 0,00 0,00 - 44,76 C 500 29,37 G 100 50,00 S 50 27,78
I_20 0 1 142,50 337,50 0,00 100,83 49,00 0,00 S 25 47,50 S 25 47,50 S 50 47,50 6,31 300,00 100,83 0,00 48,00 80,00 C 500 0,00 G 100 0,00 S 50 6,31
I_20 1 0 68,14 313,67 0,00 0,00 - 0,03 S 25 22,95 S 25 22,95 S 50 22,24 107,14 300,00 0,00 0,00 - 0,07 C 500 39,51 G 100 43,48 S 50 24,16
I_20 1 1 142,50 337,50 0,00 100,83 499,24 0,00 S 25 47,50 S 25 47,50 S 50 47,50 38,51 277,46 100,83 0,00 500,24 0,11 C 500 0,38 G 100 24,51 S 50 13,62
I_21 0 0 43,75 315,00 0,00 0,00 - 0,98 S 50 14,58 S 50 14,58 S 50 14,58 78,57 220,00 0,00 0,00 - 3,07 C 500 51,48 S 50 13,54 S 50 13,54
I_21 0 1 122,32 315,00 0,00 78,57 50,00 0,40 S 50 40,77 S 50 40,77 S 50 40,77 0,00 220,00 78,57 0,00 51,00 70,00 C 500 0,00 S 50 0,00 S 50 0,00
I_21 1 0 84,21 282,63 0,00 0,00 - 0,04 S 50 28,07 S 50 28,07 S 50 28,07 78,57 220,00 0,00 0,00 - 0,02 C 500 47,82 S 50 15,37 S 50 15,37
I_21 1 1 177,27 315,00 0,00 133,52 583,63 0,00 S 50 59,09 S 50 59,09 S 50 59,09 7,86 176,03 133,52 0,00 584,63 0,05 C 500 0,10 S 50 3,88 S 50 3,88
I_22 0 0 36,67 247,50 0,00 0,00 - 13,94 C 300 25,82 G 200 10,85 S 50 0,00 62,50 337,50 0,00 0,00 - 2,08 C 500 0,00 S 50 12,50 S 25 50,00
I_22 0 1 0,00 247,50 36,67 0,00 51,00 47,50 C 300 0,00 G 200 0,00 S 50 0,00 99,17 337,50 0,00 36,67 50,00 1,27 C 500 0,00 S 50 49,17 S 25 50,00
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I_22 1 0 36,67 247,50 0,00 0,00 - 0,06 C 300 23,62 G 200 13,04 S 50 0,00 100,46 314,73 0,00 0,00 - 0,23 C 500 0,46 S 50 50,00 S 25 50,00
I_22 1 1 0,32 246,22 38,05 0,00 777,91 0,15 C 300 0,32 G 200 0,00 S 50 0,00 100,55 337,50 0,00 38,05 776,91 0,27 C 500 0,55 S 50 50,00 S 25 50,00
I_23 0 0 100,00 300,00 0,00 0,00 - 38,33 S 25 33,33 S 25 33,33 S 25 33,33 70,00 315,00 0,00 0,00 - 19,00 G 100 10,00 S 50 30,00 S 50 30,00
I_23 0 1 170,00 300,00 0,00 70,00 25,00 9,17 S 25 56,67 S 25 56,67 S 25 56,67 0,00 315,00 70,00 0,00 24,00 25,00 G 100 0,00 S 50 0,00 S 50 0,00
I_23 1 0 100,00 300,00 0,00 0,00 - 1,53 S 25 33,33 S 25 33,33 S 25 33,33 70,00 315,00 0,00 0,00 - 0,09 G 100 27,27 S 50 21,36 S 50 21,36
I_23 1 1 158,91 300,00 0,00 58,91 441,67 0,55 S 25 52,97 S 25 52,97 S 25 52,97 11,09 315,00 58,91 0,00 442,67 0,25 G 100 0,49 S 50 5,30 S 50 5,30
I_24 0 0 120,00 360,00 0,00 0,00 - 0,73 C 500 0,00 G 100 66,67 G 100 53,33 70,00 297,50 0,00 0,00 - 38,88 C 500 30,90 G 100 30,90 G 100 8,21
I_24 0 1 184,86 360,00 2,85 67,71 227,31 0,32 C 500 0,00 G 100 98,46 G 100 86,40 5,14 297,50 67,71 2,85 226,31 74,97 C 500 1,63 G 100 2,03 G 100 1,48
I_24 1 0 153,41 334,94 0,00 0,00 - 0,27 C 500 0,00 G 100 83,04 G 100 70,36 74,91 293,82 0,00 0,00 - 0,15 C 500 0,00 G 100 47,24 G 100 27,67
I_24 1 1 148,52 331,05 10,08 0,00 85,12 0,26 C 500 0,00 G 100 80,65 G 100 67,87 80,08 297,50 0,00 10,08 86,12 0,16 C 500 0,00 G 100 49,60 G 100 30,48
I_25 0 0 70,00 315,00 0,00 0,00 - 95,00 C 500 0,00 G 200 0,00 S 50 70,00 42,86 270,00 0,00 0,00 - 39,11 G 200 24,71 S 25 9,07 S 25 9,07
I_25 0 1 81,25 315,00 21,45 32,70 90,98 95,00 C 500 0,00 G 200 0,00 S 50 81,25 31,61 270,00 32,70 21,45 89,98 53,41 G 200 11,85 S 25 9,88 S 25 9,88
I_25 1 0 70,00 315,00 0,00 0,00 - 0,40 C 500 0,00 G 200 14,05 S 50 55,95 55,67 261,03 0,00 0,00 - 0,31 G 200 0,00 S 25 27,84 S 25 27,84
I_25 1 1 49,97 312,07 25,89 0,00 57,83 0,46 C 500 0,00 G 200 0,00 S 50 49,97 68,75 270,00 0,00 25,89 58,83 0,35 G 200 0,00 S 25 34,38 S 25 34,38
I_26 0 0 135,00 382,50 0,00 0,00 - 0,74 C 500 0,00 G 200 15,36 S 50 119,64 90,00 382,50 0,00 0,00 - 70,71 C 500 38,73 S 25 25,64 S 50 25,64
I_26 0 1 114,84 382,50 73,11 52,96 124,23 0,81 C 500 0,00 G 200 0,00 S 50 114,84 110,16 382,50 52,96 73,11 123,23 63,26 C 500 20,58 S 25 44,79 S 50 44,79
I_26 1 0 192,89 353,56 0,00 0,00 - 0,27 C 500 0,00 G 200 80,13 S 50 112,75 131,28 351,54 0,00 0,00 - 0,15 C 500 0,00 S 25 67,89 S 50 63,39
I_26 1 1 150,24 320,54 175,38 66,71 102,76 0,20 C 500 0,00 G 200 60,33 S 50 89,91 198,68 382,50 66,71 175,38 103,76 0,22 C 500 0,00 S 25 102,50 S 50 96,18
I_27 0 0 115,22 305,87 0,00 0,00 - 50,00 S 50 32,61 S 50 32,61 S 25 50,00 75,00 337,50 0,00 0,00 - 82,88 C 300 34,62 G 200 34,62 G 200 5,77
I_27 0 1 142,86 334,29 8,33 83,33 22,48 2,38 S 50 47,62 S 50 47,62 S 25 47,62 0,00 337,50 83,33 8,33 23,48 117,50 C 300 0,00 G 200 0,00 G 200 0,00
I_27 1 0 62,50 337,50 0,00 0,00 - 2,21 S 50 6,25 S 50 6,25 S 25 50,00 93,12 328,44 0,00 0,00 - 0,30 C 300 19,72 G 200 49,29 G 200 24,11
I_27 1 1 150,00 337,50 3,53 91,03 5779,98 1,25 S 50 50,00 S 50 50,00 S 25 50,00 67,10 297,70 91,03 3,53 5778,98 0,21 C 300 14,13 G 200 35,32 G 200 17,66
I_28 0 0 80,00 240,00 0,00 0,00 - 14,47 C 300 55,94 G 200 19,63 S 25 4,42 150,00 360,00 0,00 0,00 - 0,47 G 200 0,00 S 25 83,33 S 50 66,67
I_28 0 1 0,00 240,00 80,00 0,00 153,50 90,00 C 300 0,00 G 200 0,00 S 25 0,00 230,00 360,00 0,00 80,00 152,50 0,21 G 200 52,88 S 25 92,38 S 50 84,75
I_28 1 0 80,00 240,00 0,00 0,00 - 0,08 C 300 47,91 G 200 17,78 S 25 14,31 152,08 358,75 0,00 0,00 - 0,42 G 200 0,35 S 25 83,31 S 50 68,41
I_28 1 1 26,77 240,00 53,23 0,00 28153,50 0,23 C 300 15,38 G 200 0,00 S 25 11,38 203,23 360,00 0,00 53,23 28152,50 0,29 G 200 34,14 S 25 89,70 S 50 79,40
I_29 0 0 75,00 382,50 0,00 0,00 - 4,40 S 25 37,50 S 50 0,00 S 25 37,50 40,62 292,50 0,00 0,00 - 0,16 C 500 0,00 G 200 31,12 G 200 9,51
I_29 0 1 115,63 382,50 0,00 40,62 25,00 3,26 S 25 57,81 S 50 0,00 S 25 57,81 0,00 292,50 40,62 0,00 26,00 0,36 C 500 0,00 G 200 0,00 G 200 0,00
I_29 1 0 75,00 382,50 0,00 0,00 - 4,40 S 25 37,50 S 50 0,00 S 25 37,50 40,62 292,50 0,00 0,00 - 0,16 C 500 0,00 G 200 31,12 G 200 9,51
I_29 1 1 69,86 382,50 33,88 28,75 425,88 4,89 S 25 28,83 S 50 12,21 S 25 28,83 45,76 292,50 28,75 33,88 426,88 0,14 C 500 0,01 G 200 33,47 G 200 12,28
I_30 0 0 112,50 360,00 0,00 0,00 - 54,14 C 300 50,78 S 50 30,86 S 50 30,86 36,11 292,50 0,00 0,00 - 0,00 S 50 15,91 S 50 4,29 S 25 15,91
I_30 0 1 100,88 360,00 70,47 58,85 141,76 68,90 C 300 37,36 S 50 31,76 S 50 31,76 47,73 292,50 58,85 70,47 142,76 0,00 S 50 15,91 S 50 15,91 S 25 15,91
I_30 1 0 121,51 352,79 0,00 0,00 - 0,34 C 300 0,14 S 50 60,69 S 50 60,69 36,11 292,50 0,00 0,00 - 0,10 S 50 11,26 S 50 11,26 S 25 13,59
I_30 1 1 133,53 360,00 0,00 21,03 227,15 0,37 C 300 0,15 S 50 66,69 S 50 66,69 20,09 287,99 21,03 0,00 226,15 0,14 S 50 5,67 S 50 5,67 S 25 8,74
I_31 0 0 46,67 315,00 0,00 0,00 - 56,62 C 300 30,70 S 25 7,98 S 25 7,98 75,00 382,50 0,00 0,00 - 162,50 C 300 0,00 G 100 0,00 S 50 75,00
I_31 0 1 -0,00 315,00 46,67 0,00 101,00 95,00 C 300 -0,00 S 25 0,00 S 25 0,00 121,67 382,50 0,00 46,67 100,00 162,50 C 300 0,00 G 100 23,94 S 50 97,73
I_31 1 0 73,59 294,81 0,00 0,00 - 0,25 C 300 0,10 S 25 36,75 S 25 36,75 104,27 356,15 0,00 0,00 - 0,45 C 300 0,30 G 100 50,76 S 50 53,21
I_31 1 1 108,88 315,00 38,70 100,92 133,07 0,32 C 300 0,13 S 25 54,38 S 25 54,38 84,09 318,33 100,92 38,70 132,07 0,33 C 300 0,22 G 100 39,58 S 50 44,28
I_32 0 0 86,67 260,00 0,00 0,00 - 0,08 C 300 27,51 S 50 28,77 S 25 30,38 65,00 276,25 0,00 0,00 - 3,50 S 25 21,67 S 50 21,67 S 50 21,67
I_32 0 1 76,67 260,00 10,00 0,00 246,69 0,12 C 300 19,58 S 50 27,39 S 25 29,70 75,00 276,25 0,00 10,00 245,69 0,00 S 25 25,00 S 50 25,00 S 50 25,00
I_32 1 0 86,67 260,00 0,00 0,00 - 0,08 C 300 27,51 S 50 28,77 S 25 30,38 68,18 273,86 0,00 0,00 - -0,00 S 25 22,73 S 50 22,73 S 50 22,73
I_32 1 1 76,67 260,00 10,00 0,00 71673,26 0,12 C 300 19,58 S 50 27,39 S 25 29,70 75,00 276,25 0,00 10,00 71674,26 0,00 S 25 25,00 S 50 25,00 S 50 25,00
I_33 0 0 75,00 318,75 0,00 0,00 - 0,08 C 300 21,08 G 200 29,40 G 100 24,52 54,17 292,50 0,00 0,00 - 0,09 C 300 17,01 G 100 37,15 G 200 0,00
I_33 0 1 97,69 318,75 0,00 22,69 230,77 0,04 C 300 32,20 G 200 36,82 G 100 28,66 31,48 292,50 22,69 0,00 231,77 0,14 C 300 0,00 G 100 31,48 G 200 0,00
I_33 1 0 75,00 318,75 0,00 0,00 - 0,08 C 300 21,08 G 200 29,40 G 100 24,52 54,17 292,50 0,00 0,00 - 0,09 C 300 17,01 G 100 37,15 G 200 0,00
I_33 1 1 97,06 318,75 0,00 22,06 44365,38 0,04 C 300 31,90 G 200 36,62 G 100 28,55 32,10 292,50 22,06 0,00 44366,38 0,14 C 300 0,47 G 100 31,64 G 200 0,00
I_34 0 0 69,64 276,25 0,00 0,00 - 0,08 C 300 26,46 G 200 33,26 G 200 9,92 97,50 276,25 0,00 0,00 - 0,25 S 25 32,50 S 50 32,50 S 25 32,50
I_34 0 1 68,71 276,25 26,55 25,61 243,88 0,09 C 300 23,84 G 200 31,52 G 200 13,35 98,44 276,25 25,61 26,55 244,88 0,00 S 25 32,81 S 50 32,81 S 25 32,81
I_34 1 0 69,64 276,25 0,00 0,00 - 0,08 C 300 26,46 G 200 33,26 G 200 9,92 97,50 276,25 0,00 0,00 - 0,01 S 25 32,58 S 50 32,34 S 25 32,58
I_34 1 1 68,71 276,25 26,52 25,58 67586,10 0,09 C 300 23,85 G 200 31,52 G 200 13,34 98,44 276,25 25,58 26,52 67587,10 0,00 S 25 32,81 S 50 32,81 S 25 32,81
I_35 0 0 107,14 300,00 0,00 0,00 - 0,03 C 500 37,45 G 100 47,49 G 200 22,20 100,00 360,00 0,00 0,00 - 0,66 G 100 3,57 S 25 48,21 S 25 48,21
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I_35 0 1 37,50 300,00 69,64 0,00 101,00 0,13 C 500 0,00 G 100 37,50 G 200 0,00 169,64 360,00 0,00 69,64 100,00 0,00 G 100 69,64 S 25 50,00 S 25 50,00
I_35 1 0 107,14 300,00 0,00 0,00 - 0,03 C 500 37,45 G 100 47,49 G 200 22,20 119,53 342,43 0,00 0,00 - 0,17 G 100 34,95 S 25 42,29 S 25 42,29
I_35 1 1 45,57 300,00 61,57 0,00 10101,00 0,10 C 500 0,01 G 100 40,00 G 200 5,56 161,57 360,00 0,00 61,57 10100,00 0,08 G 100 61,57 S 25 50,00 S 25 50,00
I_36 0 0 75,00 337,50 0,00 0,00 - 59,32 C 500 35,23 G 100 35,23 G 100 4,55 70,00 315,00 0,00 0,00 - 0,00 S 25 41,67 S 50 0,00 S 50 28,33
I_36 0 1 20,00 337,50 69,98 14,98 233,43 81,64 C 500 6,70 G 100 7,32 G 100 5,98 125,00 315,00 14,98 69,98 234,43 0,00 S 25 41,67 S 50 41,67 S 50 41,67
I_36 1 0 112,07 318,97 0,00 0,00 - 0,14 C 500 0,00 G 100 68,97 G 100 43,10 85,71 307,14 0,00 0,00 - 0,00 S 25 28,57 S 50 28,57 S 50 28,57
I_36 1 1 151,79 337,50 0,00 76,79 277,33 0,18 C 500 0,00 G 100 87,50 G 100 64,29 9,43 306,89 76,79 0,00 278,33 0,45 S 25 9,43 S 50 0,00 S 50 0,00
I_37 0 0 68,75 220,00 0,00 0,00 - 64,49 C 300 3,94 G 100 50,00 G 200 14,81 135,00 382,50 0,00 0,00 - 98,50 G 100 50,00 S 25 42,50 S 25 42,50
I_37 0 1 0,00 220,00 131,60 62,85 35,13 70,00 C 300 0,00 G 100 0,00 G 200 0,00 203,75 382,50 62,85 131,60 34,13 75,66 G 100 26,72 S 25 88,51 S 25 88,51
I_37 1 0 68,75 220,00 0,00 0,00 - 0,11 C 300 26,56 G 100 42,19 G 200 0,00 183,87 358,06 0,00 0,00 - 1,38 G 100 0,00 S 25 91,94 S 25 91,94
I_37 1 1 16,80 185,28 95,35 0,00 85,52 0,12 C 300 0,00 G 100 16,80 G 200 0,00 230,35 382,50 0,00 95,35 84,52 1,62 G 100 0,41 S 25 114,97 S 25 114,97
I_38 0 0 50,00 337,50 0,00 0,00 - 128,92 C 300 43,40 G 100 6,60 S 50 0,00 50,00 405,00 0,00 0,00 - 99,28 C 300 27,93 G 200 15,72 S 50 6,35
I_38 0 1 100,00 337,50 34,84 84,84 164,29 130,64 C 300 39,42 G 100 32,07 S 50 28,50 0,00 405,00 84,84 34,84 165,29 130,00 C 300 0,00 G 200 0,00 S 50 0,00
I_38 1 0 90,69 306,98 0,00 0,00 - 0,52 C 300 0,00 G 100 42,04 S 50 48,65 71,79 385,38 0,00 0,00 - 0,37 C 300 0,00 G 200 21,79 S 50 50,00
I_38 1 1 126,69 337,50 0,00 76,69 88,84 0,63 C 300 0,00 G 100 57,69 S 50 69,00 42,50 342,72 76,69 0,00 89,84 0,23 C 300 0,00 G 200 7,57 S 50 34,93
I_39 0 0 50,00 337,50 0,00 0,00 - 128,92 C 300 43,40 G 100 6,60 S 50 0,00 69,64 276,25 0,00 0,00 - 47,23 S 50 23,21 S 50 23,21 S 50 23,21
I_39 0 1 0,00 337,50 50,00 0,00 51,00 187,50 C 300 0,00 G 100 0,00 S 50 0,00 119,64 276,25 0,00 50,00 50,00 26,40 S 50 39,88 S 50 39,88 S 50 39,88
I_39 1 0 90,69 306,98 0,00 0,00 - 0,52 C 300 0,00 G 100 42,04 S 50 48,65 69,64 276,25 0,00 0,00 - 0,94 S 50 23,21 S 50 23,21 S 50 23,21
I_39 1 1 120,56 328,43 14,51 72,98 87,59 0,59 C 300 0,00 G 100 54,90 S 50 65,66 11,17 276,25 72,98 14,51 88,59 1,43 S 50 3,72 S 50 3,72 S 50 3,72
I_40 0 0 72,22 260,00 0,00 0,00 - 38,13 G 200 15,08 S 25 28,57 S 50 28,57 60,00 255,00 0,00 0,00 - 0,87 S 25 25,58 S 25 25,58 S 50 8,85
I_40 0 1 28,57 260,00 43,65 0,00 36,50 60,00 G 200 0,00 S 25 28,57 S 50 -0,00 103,65 255,00 0,00 43,65 37,50 0,30 S 25 36,49 S 25 36,49 S 50 30,67
I_40 1 0 73,34 259,00 0,00 0,00 - 0,12 G 200 24,08 S 25 25,70 S 50 23,55 60,00 255,00 0,00 0,00 - 0,87 S 25 25,58 S 25 25,58 S 50 8,85
I_40 1 1 38,12 230,46 68,37 1,45 3501,39 0,06 G 200 12,43 S 25 13,40 S 50 12,29 126,92 255,00 1,45 68,37 3502,39 0,00 S 25 42,31 S 25 42,31 S 50 42,31
I_41 0 0 112,50 318,75 0,00 0,00 - 0,55 C 300 2,10 G 100 102,97 G 200 7,42 120,00 360,00 0,00 0,00 - 85,00 G 200 0,00 S 50 82,35 S 50 37,65
I_41 0 1 67,79 318,75 44,71 0,00 98,00 0,94 C 300 0,00 G 100 67,79 G 200 0,00 164,71 360,00 0,00 44,71 99,00 85,00 G 200 0,00 S 50 82,35 S 50 82,35
I_41 1 0 112,50 318,75 0,00 0,00 - 0,55 C 300 2,10 G 100 102,97 G 200 7,42 120,43 359,68 0,00 0,00 - 0,40 G 200 4,04 S 50 58,20 S 50 58,20
I_41 1 1 108,61 318,75 3,89 0,00 12977,42 0,56 C 300 0,19 G 100 102,34 G 200 6,08 123,89 360,00 0,00 3,89 12976,42 0,40 G 200 5,89 S 50 59,00 S 50 59,00
I_42 0 0 40,00 270,00 0,00 0,00 - 23,81 C 500 20,95 G 100 19,05 S 25 0,00 93,75 318,75 0,00 0,00 - 0,56 S 50 19,53 S 25 37,11 S 25 37,11
I_42 0 1 0,00 270,00 40,00 0,00 38,50 50,00 C 500 0,00 G 100 0,00 S 25 0,00 133,75 318,75 0,00 40,00 37,50 0,24 S 50 39,53 S 25 47,11 S 25 47,11
I_42 1 0 40,00 270,00 0,00 0,00 - 0,04 C 500 24,62 G 100 15,38 S 25 0,00 93,75 318,75 0,00 0,00 - 0,56 S 50 19,53 S 25 37,11 S 25 37,11
I_42 1 1 9,61 270,00 30,39 0,00 1288,50 0,10 C 500 0,07 G 100 9,54 S 25 0,00 124,14 318,75 0,00 30,39 1287,50 0,32 S 50 34,73 S 25 44,71 S 25 44,71
I_43 0 0 55,00 247,50 0,00 0,00 - 0,00 C 300 27,50 G 200 27,50 G 200 0,00 87,50 297,50 0,00 0,00 - 1,09 C 300 51,57 G 100 26,77 S 25 9,16
I_43 0 1 50,88 247,50 4,12 0,00 258,00 0,01 C 300 25,03 G 200 25,85 G 200 0,00 91,62 297,50 0,00 4,12 259,00 0,00 C 300 52,78 G 100 28,13 S 25 10,71
I_43 1 0 55,00 247,50 0,00 0,00 - 0,00 C 300 27,50 G 200 27,50 G 200 0,00 87,50 297,50 0,00 0,00 - 0,01 C 300 50,00 G 100 27,08 S 25 10,42
I_43 1 1 50,88 247,50 4,12 0,00 90258,00 0,01 C 300 25,03 G 200 25,85 G 200 0,00 91,62 297,50 0,00 4,12 90259,00 0,00 C 300 52,78 G 100 28,13 S 25 10,71
I_44 0 0 125,00 300,00 0,00 0,00 - 64,72 G 200 13,89 S 25 55,56 S 50 55,56 66,67 240,00 0,00 0,00 - 0,00 S 25 27,59 S 25 27,59 S 25 11,49
I_44 0 1 108,91 300,00 16,09 0,00 50,00 80,00 G 200 0,00 S 25 55,56 S 50 53,35 82,76 240,00 0,00 16,09 49,00 0,00 S 25 27,59 S 25 27,59 S 25 27,59
I_44 1 0 125,00 300,00 0,00 0,00 - 0,22 G 200 32,38 S 25 49,39 S 50 43,23 66,67 240,00 0,00 0,00 - 0,31 S 25 22,22 S 25 22,22 S 25 22,22
I_44 1 1 108,91 300,00 16,09 0,00 13864,52 0,28 G 200 21,35 S 25 47,71 S 50 39,86 82,76 240,00 0,00 16,09 13863,52 0,00 S 25 27,59 S 25 27,59 S 25 27,59
I_45 0 0 128,57 360,00 0,00 0,00 - 0,40 C 300 16,00 G 100 83,11 G 200 29,46 50,00 315,00 0,00 0,00 - 40,00 C 300 0,00 G 200 44,44 G 200 5,56
I_45 0 1 102,88 360,00 25,69 0,00 229,25 0,45 C 300 3,95 G 100 79,10 G 200 19,83 75,69 315,00 0,00 25,69 230,25 40,00 C 300 -0,00 G 200 44,44 G 200 31,25
I_45 1 0 128,57 360,00 0,00 0,00 - 0,40 C 300 16,00 G 100 83,11 G 200 29,46 50,00 315,00 0,00 0,00 - 0,09 C 300 15,42 G 200 25,10 G 200 9,48
I_45 1 1 96,52 360,00 44,77 12,71 38214,91 0,46 C 300 0,97 G 100 78,10 G 200 17,44 82,05 315,00 12,71 44,77 38213,91 0,05 C 300 28,38 G 200 33,73 G 200 19,95
I_46 0 0 43,33 292,50 0,00 0,00 - 0,09 C 300 15,64 S 50 13,85 S 50 13,85 68,75 233,75 0,00 0,00 - 0,92 C 500 28,54 G 200 28,54 G 100 11,66
I_46 0 1 77,32 292,50 1,19 35,18 305,18 0,00 C 300 40,48 S 50 18,42 S 50 18,42 34,77 233,75 35,18 1,19 304,18 17,27 C 500 14,33 G 200 14,33 G 100 6,10
I_46 1 0 43,33 292,50 0,00 0,00 - 0,09 C 300 15,64 S 50 13,85 S 50 13,85 68,75 233,75 0,00 0,00 - 0,00 C 500 27,83 G 200 28,74 G 100 12,18
I_46 1 1 77,32 292,50 0,00 33,98 155739,68 0,00 C 300 40,48 S 50 18,42 S 50 18,42 34,77 233,75 33,98 0,00 155740,68 0,05 C 500 6,71 G 200 20,29 G 100 7,77
I_47 0 0 87,50 297,50 0,00 0,00 - 77,50 C 500 0,00 G 200 34,72 G 200 52,78 75,00 337,50 0,00 0,00 - 0,78 S 50 14,17 S 25 46,67 S 50 14,17
I_47 0 1 -0,00 297,50 87,50 0,00 46,00 77,50 C 500 0,00 G 200 -0,00 G 200 0,00 162,50 337,50 0,00 87,50 45,00 0,36 S 50 49,17 S 25 64,17 S 50 49,17
I_47 1 0 87,50 297,50 0,00 0,00 - 0,12 C 500 14,24 G 200 47,97 G 200 25,29 89,61 330,19 0,00 0,00 - 0,53 S 50 22,45 S 25 44,72 S 50 22,45
I_47 1 1 19,28 240,93 162,50 0,00 7183,80 0,04 C 500 1,54 G 200 12,03 G 200 5,70 237,50 337,50 0,00 162,50 7182,80 0,00 S 50 79,17 S 25 79,17 S 50 79,17
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Table B.4: Continued. Instances’ solutions for InstanceSetInsights
I_48 0 0 54,22 276,20 0,00 0,00 - 50,00 S 25 18,07 S 25 18,07 S 50 18,07 39,29 247,50 0,00 0,00 - 24,51 C 300 18,40 G 100 18,40 S 50 2,50
I_48 0 1 93,45 276,25 0,00 39,29 25,00 43,24 S 25 22,76 S 25 52,59 S 50 18,10 0,00 247,50 39,29 0,00 26,00 47,50 C 300 0,00 G 100 0,00 S 50 0,00
I_48 1 0 54,17 276,25 0,00 0,00 - 1,50 S 25 26,69 S 25 26,69 S 50 0,79 40,64 246,55 0,00 0,00 - 0,15 C 300 0,10 G 100 24,86 S 50 15,68
I_48 1 1 51,64 276,25 31,25 28,72 434,52 1,98 S 25 18,53 S 25 18,53 S 50 14,58 41,81 247,50 28,72 31,25 435,52 0,16 C 300 0,11 G 100 25,37 S 50 16,34
I_49 0 0 69,64 276,25 0,00 0,00 - 0,08 C 300 26,46 G 200 33,26 G 200 9,92 70,31 318,75 0,00 0,00 - 0,60 C 300 0,00 S 50 35,16 S 50 35,16
I_49 0 1 15,63 276,25 54,02 0,00 230,35 0,19 C 300 0,00 G 200 15,63 G 200 0,00 124,33 318,75 0,00 54,02 229,35 0,24 C 300 20,99 S 50 51,67 S 50 51,67
I_49 1 0 69,64 276,25 0,00 0,00 - 0,08 C 300 26,46 G 200 33,26 G 200 9,92 90,48 302,61 0,00 0,00 - 0,21 C 300 14,24 S 50 38,12 S 50 38,12
I_49 1 1 15,73 276,25 53,91 0,00 64793,57 0,19 C 300 0,06 G 200 15,67 G 200 0,00 124,22 318,75 0,00 53,91 64794,57 0,24 C 300 20,91 S 50 51,66 S 50 51,66


	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	2 BACKGROUND
	3 LITERATURE REVIEW
	4 THE ZERO REGRETS ALGORITHM: OPTIMIZING OVER PURE NASH EQUILIBRIA VIA INTEGER PROGRAMMING
	5 THE CUT-AND-PLAY ALGORITHM: COMPUTING NASH EQUILIBRIA VIA OUTER APPROXIMATIONS
	6 ARTICLE 1: WHEN NASH MEETS STACKELBERG
	7 ARTICLE 2: ZERO: PLAYING MATHEMATICAL PROGRAMMING GAMES
	8 GENERAL DISCUSSION
	9 CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES
	APPENDICES

